cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122766 Triangle read by rows: let p(n, x) = x*p(n-1, x) - p(n-2, x), then T(n, x) = d^2/dx^2 (p(n, x)).

Original entry on oeis.org

2, -2, 6, -6, -6, 12, 6, -24, -12, 20, 12, 24, -60, -20, 30, -12, 60, 60, -120, -30, 42, -20, -60, 180, 120, -210, -42, 56, 20, -120, -180, 420, 210, -336, -56, 72, 30, 120, -420, -420, 840, 336, -504, -72, 90, -30, 210, 420, -1120, -840, 1512, 504, -720, -90, 110
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 22 2006

Keywords

Examples

			Triangle begins as:
    2;
   -2,    6;
   -6,    6,   12;
    6,  -24,  -12,   20;
   12,   24,  -60,  -20,   30;
   12,   60,   60, -120,  -30,   42;
  -20,  -60,  180,  120, -210,  -42,  56;
   20, -120, -180,  420,  210, -336, -56,  72;
		

Crossrefs

Programs

  • Magma
    A122766:= func< n,k | 2*(-1)^Binomial(n-k+1, 2)*Binomial(k+1,2)*Binomial(Floor((n+k+2)/2), k+1) >;
    [A122766(n,k): k in [1..n], n in [1..14]]; // G. C. Greubel, Dec 31 2022
    
  • Mathematica
    (* First program *)
    p[0, x]=1; p[1, x]=x-1; p[k_, x_]:= p[k, x]= x*p[k-1, x] -p[k-2, x]; b = Table[Expand[p[n,x]], {n,0,15}]; Table[CoefficientList[D[b[[n]], {x,2}], x], {n,2,14}]//Flatten
    (* Second program *)
    T[n_, k_]:= 2*(-1)^Binomial[n-k+1,2]*Binomial[k+1,2]*Binomial[Floor[(n +k+2)/2], k+1]; Table[T[n,k], {n,14}, {k,n}]//Flatten (* G. C. Greubel, Dec 31 2022 *)
  • PARI
    tpol(n) = if (n <= 0, 1, if (n == 1, x -1, x*tpol(n-1) - tpol(n-2)));
    lista(nn) = {for(n=0, nn, pol = deriv(deriv(tpol(n))); for (k=0, poldegree(pol), print1(polcoeff(pol, k), ", ");););} \\ Michel Marcus, Feb 07 2014
    
  • SageMath
    def A122766(n, k): return 2*(-1)^binomial(n-k+1,2)*binomial(k+1,2)*binomial(((n+k+2)//2), k+1)
    flatten([[A122766(n, k) for k in range(1, n+1)] for n in range(1, 15)]) # G. C. Greubel, Dec 31 2022

Formula

From G. C. Greubel, Dec 31 2022: (Start)
T(n, k) = 2*(-1)^binomial(n-k+1, 2)*binomial(k+1,2)*binomial(floor((n+k +2)/2), k+1).
T(n, 1) = 2*(-1)^binomial(n,2)*binomial(floor((n+3)/2), 2)
T(n, n) = 2*A000217(n).
Sum_{k=1..n} T(n, k) = 2*A104555(n).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = 2*([n=1] - [n=2]). (End)

Extensions

Edited by N. J. A. Sloane, Oct 01 2006
Name corrected and more terms from Michel Marcus, Feb 07 2014