A122769 Numbers k such that k^2 is of the form 3*m^2 + 2*m + 1 (A056109).
1, 11, 153, 2131, 29681, 413403, 5757961, 80198051, 1117014753, 15558008491, 216695104121, 3018173449203, 42037733184721, 585510091136891, 8155103542731753, 113585939507107651, 1582048049556775361
Offset: 1
Links
- Tanya Khovanova, Recursive Sequences
- Valcho Milchev and Tsvetelina Karamfilova, Domino tiling in grid - new dependence, arXiv:1707.09741 [math.HO], 2017.
- Index entries for linear recurrences with constant coefficients, signature (14,-1).
Crossrefs
Cf. A056109.
Programs
-
Mathematica
LinearRecurrence[{14, -1}, {1, 11}, 17] (* Jean-François Alcover, Jan 07 2019 *)
Formula
Alternatively, with a different offset:
a(0) = 1, a(1) = 11, a(n) = 14*a(n-1) - a(n-2), and
a(n) = ((3 - b)*(7 - 4*b)^n + (3 + b)*(7 + 4*b)^n)/6, b = sqrt(3).
G.f.: x*(1 - 3*x)/(1 - 14*x + x^2). - Philippe Deléham, Nov 17 2008
E.g.f.: (1/3)*((9*cosh(4*sqrt(3)*x) - 5*sqrt(3)*sinh(4*sqrt(3)*x))*exp(7*x) - 9). - Franck Maminirina Ramaharo, Jan 07 2019
Extensions
Edited by N. J. A. Sloane, Oct 28 2006
Comments