cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122769 Numbers k such that k^2 is of the form 3*m^2 + 2*m + 1 (A056109).

Original entry on oeis.org

1, 11, 153, 2131, 29681, 413403, 5757961, 80198051, 1117014753, 15558008491, 216695104121, 3018173449203, 42037733184721, 585510091136891, 8155103542731753, 113585939507107651, 1582048049556775361
Offset: 1

Views

Author

Zak Seidov, Oct 21 2006

Keywords

Comments

All terms are odd. Sequence is infinite. Corresponding m's are 0, 6, 88, 1230, 17136, 238678, 3324360, 46302366, 644908768, 8982420390, 125108976696, 1742543253358, 24270496570320. s^2 are squares in A056109.
The Diophantine equation A000290(x) = A000326(y) + A000326(y-1) has the solutions x = a(n) and y = (4^n + (1 + sqrt(3))^(4*n - 3) + (1 - sqrt(3))^(4*n - 3))/(3*2^(2*n - 1)). - Bruno Berselli, Mar 04 2013

Crossrefs

Cf. A056109.

Programs

Formula

Alternatively, with a different offset:
a(0) = 1, a(1) = 11, a(n) = 14*a(n-1) - a(n-2), and
a(n) = ((3 - b)*(7 - 4*b)^n + (3 + b)*(7 + 4*b)^n)/6, b = sqrt(3).
G.f.: x*(1 - 3*x)/(1 - 14*x + x^2). - Philippe Deléham, Nov 17 2008
E.g.f.: (1/3)*((9*cosh(4*sqrt(3)*x) - 5*sqrt(3)*sinh(4*sqrt(3)*x))*exp(7*x) - 9). - Franck Maminirina Ramaharo, Jan 07 2019

Extensions

Edited by N. J. A. Sloane, Oct 28 2006