A122771 Triangle read by rows, 0 <= k <= n: T(n,k) is the coefficient of x^k in the characteristic polynomial of I + A^(-1), where A is the n-step Fibonacci companion matrix and I is the identity matrix.
1, 2, -1, -1, -1, 1, 2, -2, 2, -1, -1, -2, 4, -3, 1, 2, -3, 6, -7, 4, -1, -1, -3, 9, -13, 11, -5, 1, 2, -4, 12, -22, 24, -16, 6, -1, -1, -4, 16, -34, 46, -40, 22, -7, 1, 2, -5, 20, -50, 80, -86, 62, -29, 8, -1, -1, -5, 25, -70, 130, -166, 148, -91, 37, -9, 1, 2, -6, 30, -95, 200, -296, 314, -239, 128, -46, 10, -1, -1, -6, 36, -125
Offset: 0
Examples
Triangular array: 1; 2, -1; -1, -1, 1; 2, -2, 2, -1; -1, -2, 4, -3, 1; 2, -3, 6, -7, 4, -1; -1, -3, 9, -13, 11, -5, 1; 2, -4, 12, -22, 24, -16, 6, -1; -1, -4, 16, -34, 46, -40, 22, -7, 1; 2, -5, 20, -50, 80, -86, 62, -29, 8, -1;
References
- Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002.
- Kappraff, J., Blackmore, D. and Adamson, G. "Phyllotaxis as a Dynamical System: A Study in Number." In Symmetry in Plants edited by R. V. Jean and D. Barabe. Singapore: World Scientific. (1996).
Links
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
Programs
-
Mathematica
An[d_] := Table[If[n == d, 1, If[m == n + 1, 1, 0]], {n, 1, d}, {m, 1, d}]; Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[IdentityMatrix[d] + MatrixPower[An[d], -1], x], x], {d, 1, 20}]]; Flatten[%]
-
Python
from sympy import Matrix,eye def A122771_row(n): if n==0: return [1] A=Matrix(n,n,lambda i,j:int(i==n-1 or i==j-1)) p=(eye(n)+A.inv()).charpoly() return [(-1)**n*c for c in p.all_coeffs()[::-1]] # Pontus von Brömssen, May 01 2021
Extensions
Edited by Pontus von Brömssen, May 01 2021
Comments