cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A123947 Expansion of x^2*(1+x-x^2)/(1-2*x-4*x^2+x^3+x^4).

Original entry on oeis.org

0, 1, 3, 9, 29, 90, 284, 890, 2797, 8780, 27574, 86581, 271881, 853732, 2680833, 8418132, 26433983, 83005929, 260648825, 818469251, 2570093890, 8070410030, 25342077544, 79577232067, 249882270390, 784660981474, 2463931734897
Offset: 1

Views

Author

Gary W. Adamson and Roger L. Bagula, Oct 26 2006

Keywords

Crossrefs

Programs

  • GAP
    a:=[0,1,3,9];; for n in [5..30] do a[n]:=2*a[n-1]+4*a[n-2]-a[n-3] -a[n-4]; od; a; # G. C. Greubel, Aug 05 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( x^2*(1+x-x^2)/(1-2*x-4*x^2+x^3+x^4) )); // G. C. Greubel, Aug 05 2019
    
  • Maple
    seq(coeff(series(x^2*(1+x-x^2)/(1-2*x-4*x^2+x^3+x^4), x, n+1), x, n), n = 1..30); # G. C. Greubel, Aug 05 2019
  • Mathematica
    M = {{0,-1,-1,0,1}, {-1,0,0,0,-1}, {-1,0,1,0,-1}, {0,0,-1,0,0}, {1,-1, -1,0,1}}; v[1] = {0,0,0,0,1}; v[n_]:= v[n] = M.v[n-1]; Table[v[n][[1]], {n, 30}]
    CoefficientList[Series[x^2*(1+x-x^2)/(1-2*x-4*x^2+x^3+x^4), {x, 0, 30}], x] (* G. C. Greubel, Aug 05 2019 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x^2*(1+x-x^2)/(1-2*x-4*x^2+x^3+x^4))) \\ G. C. Greubel, Aug 05 2019
    
  • Sage
    a=(x^2*(1+x-x^2)/(1-2*x-4*x^2+x^3+x^4)).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Aug 05 2019
    

A123951 A polynomial of matrices is used to make a triangular sequence. The upper triangular antidiagonal Steinbach matrices are summed over their characteristic polynomial triangular sequences to give a new sequence of matrices: the characteristic polynomials of these new summed matrices are, then, used to make up this triangular sequence.

Original entry on oeis.org

1, 1, -1, -1, -1, 1, -1, -3, 4, -1, 37, -88, 69, -19, 1, 10879, -14344, 6831, -1375, 99, -1, -4322473, -40529664, -17486038, 3188841, -40896, -2346, 1, -11384127259974047, -783824545942228, 1058675233347, 505084925760, -64007100, -32568519, 23164, -1, -121986767767877481129923
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 26 2006

Keywords

Comments

Basically everything is done twice. The determinants get very large very fast for these matrices: Table[Det[w[[d]]], {d, 1, Length[w]}] {1, -1, -1, 37, 10879, -4322473, -11384127259974047, -121986767767877481129923, -323621163456130064854374309178100414058036559, 189651898964129252384795657180434913387386019400002936829101989683}

Examples

			{1},
{1, -1},
{-1, -1, 1},
{-1, -3, 4, -1},
{37, -88, 69, -19,1},
{10879, -14344, 6831, -1375, 99, -1},
{-4322473, -40529664, -17486038, 3188841, -40896, -2346, 1}
		

Crossrefs

Programs

  • Mathematica
    An[d_] := Table[If[n + m - 1 > d, 0, 1], {n, 1, d}, {m, 1, d}]; a = Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[An[d],x], x], {d, 1, 20}]]; w = Join[{{{1}}}, Table[Sum[MatrixPower[a[[n]][[m + 1]]*An[n], m - 1], {m, 0, Length[a[[n]]] - 1}], {n, 2, 10}]]; Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[w[[d]], x], x], {d, 1, Length[w]}]]; Flatten[%]

Formula

p(n,x) = CharacteristicPolynomial(a(i,j)) p(n,x)->t(n,m) b(i,j) = Sum[t(i,j).a(j,k).{j,1,m}] p'(n,x) = CharacteristicPolynomial(b(i,j)) p'(n,x)->t'(n,m).
Showing 1-2 of 2 results.