A122780 Nonprimes k such that 3^k == 3 (mod k).
1, 6, 66, 91, 121, 286, 561, 671, 703, 726, 949, 1105, 1541, 1729, 1891, 2465, 2665, 2701, 2821, 3281, 3367, 3751, 4961, 5551, 6601, 7107, 7381, 8205, 8401, 8646, 8911, 10585, 11011, 12403, 14383, 15203, 15457, 15841, 16471, 16531, 18721, 19345
Offset: 1
Examples
66 is composite and 3^66 = 66*468229611858069884271524875811 + 3 so 66 is in the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
isA122780 := proc(n) if isprime(n) then false; else modp( 3 &^ n,n) = modp(3,n) ; end if; end proc: for n from 1 do if isA122780(n) then print(n) ; end if; end do: # R. J. Mathar, Jul 15 2012
-
Mathematica
Select[Range[30000], ! PrimeQ[ # ] && Mod[3^#, # ] == Mod[3, # ] &] Join[{1},Select[Range[20000],!PrimeQ[#]&&PowerMod[3,#,#]==3&]] (* Harvey P. Dale, Apr 30 2023 *)
-
PARI
is_A122780(n)={n>0 & Mod(3, n)^n==3 & !ispseudoprime(n)} \\ M. F. Hasler, Jul 19 2012
Comments