cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A153514 Terms of A122780 which are not Carmichael numbers A002997.

Original entry on oeis.org

1, 6, 66, 91, 121, 286, 671, 703, 726, 949, 1541, 1891, 2665, 2701, 3281, 3367, 3751, 4961, 5551, 7107, 7381, 8205, 8401, 8646, 11011, 12403, 14383, 15203, 15457, 16471, 16531, 18721, 19345, 23521, 24046, 24661, 24727, 28009, 29161, 30857, 31621
Offset: 1

Views

Author

Artur Jasinski, Dec 28 2008

Keywords

Comments

For the intersection of this sequence and A153508, see A153513.

Crossrefs

Programs

  • Maple
    filter:= proc(n) local p;
      if isprime(n) or (3 &^n - 3 mod n <> 0) then return false fi;
      if n::even then return true fi;
      if not numtheory:-issqrfree(n) then return true fi;
      for p in numtheory:-factorset(n) do
        if n-1 mod (p-1) <> 0 then return true fi
      od;
    false
    end proc:
    filter(1):= true:
    select(filter, [$1..10^5]); # Robert Israel, Jan 29 2017
  • Mathematica
    okQ[n_] := !PrimeQ[n] && PowerMod[3, n, n] == Mod[3, n] && Mod[n, CarmichaelLambda[n]] != 1;
    Select[Range[10^5], okQ] (* Jean-François Alcover, Mar 27 2019 *)

A005935 Pseudoprimes to base 3.

Original entry on oeis.org

91, 121, 286, 671, 703, 949, 1105, 1541, 1729, 1891, 2465, 2665, 2701, 2821, 3281, 3367, 3751, 4961, 5551, 6601, 7381, 8401, 8911, 10585, 11011, 12403, 14383, 15203, 15457, 15841, 16471, 16531, 18721, 19345, 23521, 24046, 24661, 24727, 28009, 29161
Offset: 1

Views

Author

Keywords

Comments

Theorem: If q>3 and both numbers q and (2q-1) are primes then n=q*(2q-1) is a pseudoprime to base 3 (i.e. n is in the sequence). So for n>2, A005382(n)*(2*A005382(n)-1) is in the sequence (see Comments lines for the sequence A122780). 91,703,1891,2701,12403,18721,38503,49141... are such terms. This sequence is a subsequence of A122780. - Farideh Firoozbakht, Sep 13 2006
Composite numbers n such that 3^(n-1) == 1 (mod n).
Theorem (R. Steuerwald, 1948): if n is a pseudoprime to base b and gcd(n,b-1)=1, then (b^n-1)/(b-1) is a pseudoprime to base b. In particular, if n is an odd pseudoprime to base 3, then (3^n-1)/2 is a pseudoprime to base 3. - Thomas Ordowski, Apr 06 2016
Steuerwald's theorem can be strengthened by weakening his assumption as follows: if n is a weak pseudoprime to base b and gcd(n,b-1)=1, then ... - Thomas Ordowski, Feb 23 2021

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 91, p. 33, Ellipses, Paris 2008.
  • R. K. Guy, Unsolved Problems in Number Theory, A12.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Pseudoprimes to other bases: A001567 (2), A005936 (5), A005937 (6), A005938 (7), A005939 (10).
Subsequence of A122780.
Cf. A005382.

Programs

  • Mathematica
    base = 3; t = {}; n = 1; While[Length[t] < 100, n++; If[! PrimeQ[n] && PowerMod[base, n-1, n] == 1, AppendTo[t, n]]]; t (* T. D. Noe, Feb 21 2012 *)
  • PARI
    is_A005935(n)={Mod(3,n)^(n-1)==1 & !ispseudoprime(n) & n>1}  \\ M. F. Hasler, Jul 19 2012

Extensions

More terms from David W. Wilson, Aug 15 1996

A130433 Even pseudoprimes to base 3.

Original entry on oeis.org

286, 24046, 232726, 1304446, 1707266, 2232026, 3197806, 3922126, 4446982, 5603326, 5886166, 10123366, 10169926, 12304774, 13658086, 45133726, 47766286, 52249654, 62656126, 75421126, 76254046, 91459126, 91612246, 96956926, 108571606, 139868326, 151513846
Offset: 1

Views

Author

Alexander Adamchuk, May 26 2007, Jun 17 2007

Keywords

Comments

The first 27 terms (halved) are given in Table 1 by Paszkiewicz and Rotkiewicz. - R. J. Mathar, Aug 22 2012

Crossrefs

Even terms of A005935.
Terms of A122780 that are congruent to 2 or 4 modulo 6.

Programs

  • Mathematica
    Do[ f=PowerMod[ 3, 2n-1, 2n ]; If[ f==1, Print[ 2n ] ], {n,2,7000000} ]
  • PARI
    forstep(n=4,10^10,2,Mod(3,n)^(n-1)==1 && print1(n,", ")) \\ Jeppe Stig Nielsen, Apr 25 2018

Extensions

More terms from Alexander Adamchuk, Jun 17 2007
a(25)-a(27) from Jeppe Stig Nielsen, Apr 25 2018

A116629 Positive integers k such that 13^k == 3 (mod k).

Original entry on oeis.org

1, 2, 5, 166, 287603, 9241538, 2366680105, 8347156585, 21682897793, 6988245760865, 9045859950329, 10076294257985, 50299408064905, 254874726648713
Offset: 1

Views

Author

Zak Seidov, Feb 19 2006

Keywords

Comments

No other terms below 10^15. - Max Alekseyev, Nov 24 2017
Some larger terms: 1440926367749746685, 76025040962646716305439353859479569558065. - Max Alekseyev, Jun 29 2011

Crossrefs

Solutions to 13^n == k (mod n): A001022 (k=0), A015963 (k=-1), A116621 (k=1), A116622 (k=2), this sequence (k=3), A116630 (k=4), A116611 (k=5), A116631 (k=6), A116632 (k=7), A295532 (k=8), A116636 (k=9), A116620 (k=10), A116638 (k=11), A116639 (k=15).

Programs

  • Mathematica
    Join[{1, 2}, Select[Range[1, 5000], Mod[13^#, #] == 3 &]] (* G. C. Greubel, Nov 19 2017 *)
    Join[{1, 2}, Select[Range[10000000], PowerMod[13, #, #] == 3 &]] (* Robert Price, Apr 10 2020 *)
  • PARI
    isok(n) = Mod(13, n)^n == 3; \\ Michel Marcus, Nov 19 2017

Extensions

Two more terms from Ryan Propper, Jan 09 2008
Terms 1,2 are prepended and a(9)-a(14) are added by Max Alekseyev, Jun 29 2011; Nov 24 2017

A153513 Composite numbers k such that 2^k-2 and 3^k-3 are both divisible by k and k is not a Carmichael number (A002997).

Original entry on oeis.org

2701, 18721, 31621, 49141, 83333, 83665, 88561, 90751, 93961, 104653, 107185, 176149, 204001, 226801, 228241, 276013, 282133, 534061, 563473, 574561, 622909, 653333, 665281
Offset: 1

Views

Author

Artur Jasinski, Dec 28 2008

Keywords

Crossrefs

Intersection of A153514 and A153508 (excluding the number 1).

Programs

  • Maple
    filter:= proc(n) local p;
      if isprime(n) or (2 &^n - 2 mod n <> 0) or (3 &^n - 3 mod n <> 0) then return false fi;
      if n::even then return true fi;
      if not numtheory:-issqrfree(n) then return true fi;
      for p in numtheory:-factorset(n) do
        if n-1 mod (p-1) <> 0 then return true fi
      od;
    false
    end proc:
    select(filter, [$2..10^6]); # Robert Israel, Jan 29 2017
  • Mathematica
    Reap[Do[If[CompositeQ[n] && Divisible[2^n-2, n] && Divisible[3^n-3, n] && Mod[n, CarmichaelLambda[n]] != 1, Print[n]; Sow[n]], {n, 2, 10^6}]][[2, 1]] (* Jean-François Alcover, Mar 25 2019 *)

A129493 Composite numbers k such that 3^k mod k is a power of 3.

Original entry on oeis.org

6, 10, 12, 14, 18, 22, 24, 26, 30, 33, 34, 36, 38, 39, 46, 51, 54, 56, 57, 58, 62, 63, 66, 69, 72, 74, 78, 82, 86, 87, 90, 91, 92, 93, 94, 99, 104, 106, 108, 111, 112, 116, 117, 118, 120, 121, 122, 123, 124, 129, 132, 134, 135, 141, 142, 144, 146, 148, 154, 158, 159
Offset: 1

Views

Author

Robert G. Wilson v, Apr 17 2007

Keywords

Comments

Complement to composite numbers: 9, 15, 21, 25, 27, 28, 35, 42, 44, 45, 48, 49, 50, 52, 55, 60, 65, 68, 70, 75, ....

Examples

			14 is a member of the sequence since 3^14 mod 14 = 9.
		

Crossrefs

Programs

  • Magma
    [k:k in [2..160]| not IsPrime(k)  and  not IsZero(a)  and (PrimeDivisors(a) eq [3]) where a is 3^k mod k ]; // Marius A. Burtea, Dec 04 2019
  • Maple
    filter:= proc(n) local k;
      if isprime(n) then return false fi;
      k:= 3 &^ n mod n;
      k > 1 and k = 3^padic:-ordp(k,3)
    end proc:
    select(filter, [$4..1000]); # Robert Israel, Dec 03 2019
  • Mathematica
    Select[Range@ 161, IntegerQ@ Log[3, PowerMod[3, #, # ]] &]

A122784 Nonprimes k such that 7^k == 7 (mod k).

Original entry on oeis.org

1, 6, 14, 21, 25, 42, 105, 133, 231, 301, 325, 525, 561, 703, 817, 1105, 1729, 1825, 2101, 2353, 2465, 2821, 3277, 3325, 3486, 3913, 4011, 4525, 4825, 5565, 5719, 5901, 6601, 6697, 7525, 8321, 8911, 9331, 10225, 10325, 10585, 10621, 11041, 11521
Offset: 1

Views

Author

Farideh Firoozbakht, Sep 12 2006

Keywords

Comments

Theorem: If both numbers q and 2q-1 are primes then q*(2q-1) is in the sequence iff q=2 or mod(q,14) is in the set {1, 5, 13}. 6, 703, 18721, 38503, 88831, 104653, 146611, 188191,... are such terms.

Crossrefs

Programs

  • Mathematica
    Select[Range[20000], ! PrimeQ[#] && PowerMod[7, #, #] == Mod[7, #] &]
    With[{nn=12000},Select[Complement[Range[nn],Prime[Range[PrimePi[ nn]]]], PowerMod[7,#,#]==Mod[7,#]&]] (* Harvey P. Dale, Jul 12 2012 *)

A153515 Terms of A122782 which are not Carmichael numbers A002997.

Original entry on oeis.org

1, 4, 10, 15, 20, 65, 124, 190, 217, 310, 435, 781, 1541, 1891, 3565, 3820, 4123, 4495, 5461, 5611, 5662, 5731, 6735, 7449, 7813, 8029, 8290, 9881, 11041, 11476, 12801, 13021, 13333, 13981, 14981, 15751, 16297, 17767, 20345, 20710, 21361, 22791
Offset: 1

Views

Author

Artur Jasinski, Dec 28 2008

Keywords

Comments

Are there entries in this sequence which are also in A153513 ?
Yes. This subsequence starts 721801, 873181, 4504501, 8646121, 9006401, 9863461, 10403641, 10680265,... (similar to A153580). - R. J. Mathar, Mar 30 2011

Crossrefs

Programs

  • Mathematica
    Select[Range[10^4], !PrimeQ[#] && PowerMod[5, #, # ] == Mod[5, #] && Mod[#, CarmichaelLambda[#]] != 1 &] (* Amiram Eldar, Sep 19 2019 *)

A153580 Terms of A083737 which are not Carmichael numbers (A002997).

Original entry on oeis.org

721801, 873181, 4504501, 8646121, 9006401, 9863461, 10403641, 12322133, 14609401, 15913261, 18595801, 18736381, 20234341, 21397381, 22066201, 22369621, 22885129, 25326001, 25696133, 28312921, 36307981, 42702661
Offset: 1

Views

Author

Ray Chandler & Artur Jasinski, Dec 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[5*10^7], ! PrimeQ[ # ] && PowerMod[2, # - 1, # ] == 1 && PowerMod[3, # - 1, # ] == 1 && PowerMod[5, # - 1, # ] == 1 && Mod[ #, CarmichaelLambda[ # ]] != 1 &] (* Ray Chandler, Dec 28 2008 *)

A153581 Pseudoprimes to bases 2,3,5 and 7 which are not Carmichael numbers (A002997).

Original entry on oeis.org

721801, 8646121, 10403641, 22885129, 36307981, 42702661, 46094401, 48064021, 52204237, 79398901, 80918281, 81954133, 114329881, 116151661, 143168581, 170782921, 188985961, 217145881, 220531501, 282707461, 299671921, 303373801, 326695141, 353815801, 361307521
Offset: 1

Views

Author

Ray Chandler & Artur Jasinski, Dec 28 2008

Keywords

Comments

Terms congruent to 5 (mod 6): 468950021, 493108481, 659846021, 5936122901, 8144063621, ... - Robert G. Wilson v, Sep 03 2014
Terms not congruent to 1 (mod 12): 468950021, 493108481, 643767931, 659846021, 773131927, 5779230451, 5936122901, 7294056727, 8144063621, 9671001451, ... - Robert G. Wilson v, Sep 03 2014

Crossrefs

Programs

  • Mathematica
    fQ[n_] := ! PrimeQ[n] && PowerMod[2, n - 1, n] == 1 && PowerMod[3, n - 1, n] == 1 && PowerMod[5, n - 1, n] == 1 && PowerMod[7, n - 1, n] == 1 && Mod[n, CarmichaelLambda[n]] != 1; Select[ Range[ 365000000], fQ] (* Ray Chandler, Dec 28 2008; corrected by Robert G. Wilson v, Sep 01 2014 *)

Extensions

Terms a(8) and onward from Robert G. Wilson v, Sep 01 2014
Showing 1-10 of 15 results. Next