cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122832 Exponential Riordan array (e^(x(1+x)),x).

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 7, 9, 3, 1, 25, 28, 18, 4, 1, 81, 125, 70, 30, 5, 1, 331, 486, 375, 140, 45, 6, 1, 1303, 2317, 1701, 875, 245, 63, 7, 1, 5937, 10424, 9268, 4536, 1750, 392, 84, 8, 1, 26785, 53433, 46908, 27804, 10206, 3150, 588, 108, 9, 1
Offset: 0

Views

Author

Paul Barry, Sep 12 2006

Keywords

Comments

Row sums are A000898. Inverse is A122833. Product of A007318 and A067147.

Examples

			Triangle begins:
   1;
   1,   1;
   3,   2,  1;
   7,   9,  3,  1;
  25,  28, 18,  4, 1;
  81, 125, 70, 30, 5, 1;
  ...
From _Peter Bala_, May 14 2012: (Start)
T(3,1) = 9. The 9 ways to select a subset of {1,2,3} of size 1 and arrange the remaining elements into a set of lists (denoted by square brackets) of length 1 or 2 are:
{1}[2,3], {1}[3,2], {1}[2][3],
{2}[1,3], {2}[3,1], {2}[1][3],
{3}[1,2], {3}[2,1], {3}[1][2]. (End)
		

Crossrefs

A000898 (row sums), A047974 (column 0), A291632 (column 1), A122833 (inverse array).

Programs

  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[E^(#(1+#))&, #&, 10, True] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
  • PARI
    T(n,k) = (n!/k!)*sum(i=0, n-k, binomial(i,n-k-i)/i!); \\ Michel Marcus, Aug 28 2017

Formula

Number triangle T(n,k) = (n!/k!)*Sum_{i = 0..n-k} C(i,n-k-i)/i!.
From Peter Bala, May 14 2012: (Start)
Array is exp(S + S^2) where S is A132440 the infinitesimal generator for Pascal's triangle.
T(n,k) = binomial(n,k)*A047974(n-k).
So T(n,k) gives the number of ways to choose a subset of {1,2,...,n} of size k and then arrange the remaining n-k elements into a set of lists of length 1 or 2. (End)
From Peter Bala, Oct 24 2023: (Start)
n-th row polynomial: R(n,x) = exp(D + D^2) (x^n) = exp(D^2) (1 + x)^n, where D denotes the derivative operator d/dx. Cf. A111062.
The sequence of polynomials defined by R(n,x-1) = exp(D^2) (x^n) begins [1, 1, 2 + x^2, 6*x + x^3, 12 + 12*x^2 + x^4, ...] and is related to the Hermite polynomials. See A059344. (End)

Extensions

More terms from Michel Marcus, Aug 28 2017