cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A115978 Expansion of phi(-q) * phi(-q^3) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 0, -2, 6, 0, 0, -4, 0, -2, 0, 0, 6, -4, 0, 0, 6, 0, 0, -4, 0, -4, 0, 0, 0, -2, 0, -2, 12, 0, 0, -4, 0, 0, 0, 0, 6, -4, 0, -4, 0, 0, 0, -4, 0, 0, 0, 0, 6, -6, 0, 0, 12, 0, 0, 0, 0, -4, 0, 0, 0, -4, 0, -4, 6, 0, 0, -4, 0, 0, 0, 0, 0, -4, 0, -2, 12, 0, 0, -4, 0, -2, 0, 0, 12, 0, 0, 0, 0, 0, 0, -8, 0, -4, 0, 0, 0, -4, 0, 0, 6, 0
Offset: 0

Views

Author

Michael Somos, Feb 09 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - 2*q - 2*q^3 + 6*q^4 - 4*q^7 - 2*q^9 + 6*q^12 - 4*q^13 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] EllipticTheta[ 4, 0, q^3], {q, 0, n}] (* Michael Somos, Nov 09 2013 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^3 + A))^2 / (eta(x^2 + A) * eta(x^6 + A)), n))}
    
  • PARI
    {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); -2 * prod( k=1, matsize(A)[1], if(p = A[k,1], e = A[k,2]; if( p==2, -3 * ((e+1)%2), if( p==3, 1, if( p%6==1, e+1, (e+1)%2))))))} /* Michael Somos, Nov 09 2013 */

Formula

Expansion of theta_4(q) * theta_4(q^3) in powers of q.
Expansion of (4 * a(q^4) - a(q)) / 3 = (4 * b(q^4) - b(q)) * b(q) / (3 * b(q^2)) in powers of q where a(), b() are cubic AGM theta functions. - Michael Somos, Nov 09 2013
Expansion of (eta(q) * eta(q^3))^2 / (eta(q^2) * eta(q^6)) in powers of q.
Euler transform of period 6 sequence [ -2, -1, -4, -1, -2, -2, ...].
Moebius transform is period 12 sequence [ -2, 2, 0, 6, 2, 0, -2, -6, 0, -2, 2, 0, ...]. - Michael Somos, Nov 09 2013
a(n) = -2*b(n) where b(n) is multiplicative and b(2^e) = -3 * (1 + (-1)^e) / 2 if e>0, b(3^e) = 1, b(p^e) = 1+e if p == 1 (mod 6), b(p^e) = (1 +(-1)^e) / 2 if p == 5 (mod 6).
Given g.f. A(x), then B(x) = A(x)^2 satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = v*(u + v)^2 - 4*u * (w^2 - v*w + v^2).
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 192^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A033762. - Michael Somos, Nov 09 2013
G.f.: 1 - 2*(Sum_{k>0} x^k / (1 + x^k + x^(2*k)) - 4 * x^(4*k) / (1 + x^(4*k) + x^(8*k))).
G.f.: (Sum_{k in Z} (-x)^(k^2)) * (Sum_{k in Z} (-x)^(3*k^2)).
a(n) = -2 * A115979(n) unless n=0. a(n) = (-1)^n * A033716(n).
a(3*n + 2) = a(4*n + 2) = 0. a(3*n) = a(n). a(2*n + 1) = -2 * A033762(n). a(3*n + 1) = -2 * A122861(n). a(4*n) = A004016(n). a(4*n + 1) = -2 * A112604(n). a(6*n + 1) = -2 * A097195(n). - Michael Somos, Nov 09 2013

A097109 G.f.: s(2)^2*s(3)^3/(s(1)*s(6)^2), where s(k) = eta(q^k) and eta(q) is Dedekind's function, cf. A010815.

Original entry on oeis.org

1, 1, 0, -2, -3, 0, 0, 2, 0, -2, 0, 0, 6, 2, 0, 0, -3, 0, 0, 2, 0, -4, 0, 0, 0, 1, 0, -2, -6, 0, 0, 2, 0, 0, 0, 0, 6, 2, 0, -4, 0, 0, 0, 2, 0, 0, 0, 0, 6, 3, 0, 0, -6, 0, 0, 0, 0, -4, 0, 0, 0, 2, 0, -4, -3, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, -2, -6, 0, 0, 2, 0, -2, 0, 0, 12, 0, 0, 0, 0, 0, 0, 4, 0, -4, 0, 0, 0, 2, 0, 0, -3, 0, 0, 2, 0
Offset: 0

Views

Author

N. J. A. Sloane, Sep 16 2004

Keywords

Comments

Coefficients are multiplicative [Fine].

References

  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 80, Eq. (32.36).

Crossrefs

Programs

  • Mathematica
    QP = QPochhammer; s = QP[q^2]^2*(QP[q^3]^3/(QP[q]*QP[q^6]^2)) + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015, adapted from PARI *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A)^3 / (eta(x + A) * eta(x^6 + A)^2), n))} /* Michael Somos, Sep 15 2006 */
    
  • PARI
    {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if(p==2, 3*(e%2-1), if( p==3, -2, if( p%6==1, e+1, 1-e%2))))))} /* Michael Somos, Sep 15 2006 */

Formula

Fine gives an explicit formula for a(n) in terms of the divisors of n.
From Michael Somos, Sep 15 2006: (Start)
Expansion of (a(q) - 3*a(q^3) - 4*a(q^4) + 12*a(q^12)) / 6 in powers of q where a() is a cubic AGM theta function.
Euler transform of period 6 sequence [ 1, -1, -2, -1, 1, -2, ...].
a(n) is multiplicative with a(2^e) = -3(1+(-1)^e)/2 if e>0, a(3^e) = -2 if e>0, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6). (End)
a(3*n + 2) = 0. a(3*n) = A115978(n). a(3*n + 1) = A122861(n).
Sum_{k=0..n} abs(a(k)) ~ c * n, where c = 2*Pi/(3*sqrt(3)) = 1.209199... (A248897). - Amiram Eldar, Jan 22 2024

A129576 Expansion of phi(x) * chi(x) * psi(-x^3) in powers of x where phi(), chi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 3, 2, 0, 2, 3, 2, 0, 1, 6, 2, 0, 2, 0, 2, 0, 3, 6, 0, 0, 2, 3, 2, 0, 2, 6, 2, 0, 0, 0, 4, 0, 2, 3, 2, 0, 2, 6, 0, 0, 1, 6, 2, 0, 4, 0, 2, 0, 0, 6, 2, 0, 2, 0, 2, 0, 3, 6, 2, 0, 2, 0, 0, 0, 2, 9, 2, 0, 0, 6, 2, 0, 4, 0, 2, 0, 2, 0, 0, 0, 2, 6, 4, 0, 0, 3, 4
Offset: 0

Views

Author

Michael Somos, Apr 23 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882). - Michael Somos, Jun 28 2017

Examples

			G.f. = 1 + 3*x + 2*x^2 + 2*x^4 + 3*x^5 + 2*x^6 + x^8 + 6*x^9 + 2*x^10 + ...
G.f. = q + 3*q^4 + 2*q^7 + 2*q^13 + 3*q^16 + 2*q^19 + q^25 + 6*q^28 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 2^(-1/2) x^(-3/8) EllipticTheta[ 3, 0, x] QPochhammer[ -x, x^2] EllipticTheta[ 2, Pi/4, x^(3/2)], {x, 0, n}]; (* Michael Somos, Nov 11 2015 *)
    a[ n_] := Length @ FindInstance[ x^2 + 3 y^2 == 3 n + 1, {x, y}, Integers, 10^9] / 2; (* Michael Somos, Sep 03 2016 *)
    a[ n_] := If[ n < 1, Boole[n == 0], Times @@ (Which[# == 3, Boole[#2 == 0], # == 2, 3 (1 + (-1)^#2)/2, Mod[#, 3] == 2, (1 + (-1)^#2)/2, True, #2 + 1] & @@@ FactorInteger[3 n + 1])]; (* Michael Somos, Jun 28 2017 *)
  • PARI
    {a(n) = if( n<0, 0, n = 3*n + 1; sumdiv(n, d, kronecker(-3, d) * [0, 1, -2, 1] [n/d%4 + 1] ))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^7 * eta(x^3 + A) * eta(x^12 + A) / (eta(x + A)^3 * eta(x^4 + A)^3 * eta(x^6 + A)), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, n = 3*n + 1; A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 3*(1-e%2), p==3, 0, p%3==2, 1-e%2, e+1)))}; /* Michael Somos, Jun 28 2017 */

Formula

From Michael Somos, Jun 28 2017: (Start)
Expansion of q^(-1/3) * (2*c(q) + c(-q)) / 3 = q^(-1/3) * (c(q) + 2*c(q^4)) / 3 in powers of q where c() is a cubic AGM theta function.
Expansion of (a(q) - a(q^3) + 2*a(q^4) - 2*a(q^12)) / 6 in powers of q where a() is a cubic AGM theta function.
Expansion of q^(-1/3) * eta(q^2)^7 * eta(q^3) * eta(q^12) / (eta(q)^3 * eta(q^4)^3 * eta(q^6)) in powers of q. (End)
Euler transform of period 12 sequence [3, -4, 2, -1, 3, -4, 3, -1, 2, -4, 3, -2, ...].
a(n) = b(3*n + 1) where b() is multiplicative and b(2^e) = 3 * (1 + (-1)^e) / 2 if e>0, a(3^e) = 0^e, a(p^e) = e+1 if p == 1 (mod 3), a(p^e) = (1 + (-1)^e)/2 if p == 2 (mod 3).
a(n) = A096936(3*n + 1) = A112298(3*n + 1).
2 * a(n) = A033716(3*n + 1). - Michael Somos, Sep 03 2016
a(n) = (-1)^n * A122161(n). - Michael Somos, Jun 28 2017
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(3) = 1.813799... (A093602). - Amiram Eldar, Dec 29 2023

A244375 Expansion of (a(q) + 3*a(q^2) - 4*a(q^4)) / 6 in powers of q where a() is a cubic AGM theta function.

Original entry on oeis.org

1, 3, 1, -3, 0, 3, 2, 3, 1, 0, 0, -3, 2, 6, 0, -3, 0, 3, 2, 0, 2, 0, 0, 3, 1, 6, 1, -6, 0, 0, 2, 3, 0, 0, 0, -3, 2, 6, 2, 0, 0, 6, 2, 0, 0, 0, 0, -3, 3, 3, 0, -6, 0, 3, 0, 6, 2, 0, 0, 0, 2, 6, 2, -3, 0, 0, 2, 0, 0, 0, 0, 3, 2, 6, 1, -6, 0, 6, 2, 0, 1, 0, 0
Offset: 1

Views

Author

Michael Somos, Jun 26 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q + 3*q^2 + q^3 - 3*q^4 + 3*q^6 + 2*q^7 + 3*q^8 + q^9 - 3*q^12 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(12), 1), 82); A[2] + 3*A[3] + A[4] - 3*A[5]; /* Michael Somos, Jan 17 2015 */
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ Mod[ n/d, 2] {1, 3, 0, -3, -1, 0}[[ Mod[ d, 6, 1] ]], {d, Divisors @ n}]];
    a[ n_] := SeriesCoefficient[ QPochhammer[ q^2]^8 QPochhammer[ q^3] QPochhammer[ q^12]^4 / (QPochhammer[ q]^3 QPochhammer[ q^4]^4 QPochhammer[ q^6]^4), {q, 0, n}];
    a[ n_] := SeriesCoefficient[ q QPochhammer[ -q, q^2]^3 QPochhammer[ -q^6, q^6]^3 EllipticTheta[ 4, 0, q^2] EllipticTheta[ 2, Pi/4, q^(3/2)] / (2^(1/2) q^(3/8)), {q, 0, n}]; (* Michael Somos, Jan 17 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, (n/d%2) * [0, 1, 3, 0, -3, -1][d%6 + 1]))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^8 * eta(x^3 + A) * eta(x^12 + A)^4 / (eta(x + A)^3 * eta(x^4 + A)^4 * eta(x^6 + A)^4), n))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=1, n, x^k / (1 + x^k + x^(2*k)) * [0, 1, 4, 1][k%4 + 1], x * O(x^n)), n))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=1, n, x^k / (1 - x^(2*k)) * [0, 1, 3, 0, -3, -1][k%6 + 1], x * O(x^n)), n))};
    
  • PARI
    {a(n) = my(A);  if( n<1, 0, A = factor(n); prod( j=1, matsize(A)[1], if( p = A[j,1], e = A[j,2]; if( p==2, 3 * (-1)^(e+1), if( p==3, 1, if( p%6 == 1, e+1, (1 + (-1)^e) / 2))))))};
    

Formula

Expansion of (b(q) - b(q^4)) * (b(q) - 2*b(q^4)) / (3* b(q^2)) = b(q^2)^2 * (b(q^4) - b(q)) / (3 * b(q) * b(q^4)) in powers of q where b() is a cubic AGM theta function.
Expansion of q * phi(q)^2 * psi(q^6)^2 / (psi(q) * psi(q^3)) in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of q * chi(q)^3 * phi(-q^2) * psi(-q^3) / chi(-q^6)^3 in powers of q where phi(), psi(), chi() are Ramanujan theta functions. - Michael Somos, Jan 17 2015
Expansion of q * f(-q) * f(q, q^5)^4 / f(-q^3)^3 in powers of q where f() is a Ramanujan theta function. - Michael Somos, Jan 17 2015
Expansion of eta(q^2)^8 * eta(q^3) * eta(q^12)^4 / (eta(q)^3 * eta(q^4)^4 * eta(q^6)^4) in powers of q. - Michael Somos, Jan 17 2015
a(n) is multiplicative with a(2^e) = 3 * (-1)^(e+1) if e>0, a(3^e) = 1, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6).
Euler transform of period 12 sequence [ 3, -5, 2, -1, 3, -2, 3, -1, 2, -5, 3, -2, ...].
Moebius transform is period 12 sequence [ 1, 2, 0, -6, -1, 0, 1, 6, 0, -2, -1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 3^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A244339.
a(2*n) = 3 * A093829(n). a(2*n + 1) = A033762(n). a(3*n) = a(n). a(3*n + 1) = A122861(n). a(6*n + 2) = 3 * A033687(n). a(6*n + 5) = 0.
a(n) = -(-1)^n * A112298(n). - Michael Somos, Jan 17 2015
Sum_{k=1..n} abs(a(k)) ~ (Pi/sqrt(3)) * n. - Amiram Eldar, Jan 23 2024

A136748 Expansion of (a(q) - a(q^2) - 4*a(q^4) + 4*a(q^8)) / 6 in powers of q where a() is a cubic AGM theta function.

Original entry on oeis.org

1, -1, 1, -3, 0, -1, 2, 3, 1, 0, 0, -3, 2, -2, 0, -3, 0, -1, 2, 0, 2, 0, 0, 3, 1, -2, 1, -6, 0, 0, 2, 3, 0, 0, 0, -3, 2, -2, 2, 0, 0, -2, 2, 0, 0, 0, 0, -3, 3, -1, 0, -6, 0, -1, 0, 6, 2, 0, 0, 0, 2, -2, 2, -3, 0, 0, 2, 0, 0, 0, 0, 3, 2, -2, 1, -6, 0, -2, 2, 0
Offset: 1

Views

Author

Michael Somos, Jan 22 2008

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q - q^2 + q^3 - 3*q^4 - q^6 + 2*q^7 + 3*q^8 + q^9 - 3*q^12 + 2*q^13 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, (Mod[#, 2] - 4 Boole[Mod[#, 8] == 4]) KroneckerSymbol[ -3, n/#] &]]; (* Michael Somos, Oct 12 2015 *)
    a[ n_] := If[ n < 1, 0, Times @@ (Which[# == 1 || # == 3, 1, # == 2, If[#2 < 2, -1, -3 (-1)^#2], Mod[#, 6] == 1, #2 + 1, True, 1 - Mod[#2, 2]] & @@@ FactorInteger@n)]; (* Michael Somos, Oct 12 2015 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^3+A) * eta(x^4 + A)^4 * eta(x^24 + A)^2 / ( eta(x^2 + A) * eta(x^8+A) * eta(x^12+A) )^2, n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==2, if( e<2, -1, -3 * (-1)^e), p==3, 1, p%6>1, !(e%2), e+1)))};
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, ((d%2) -4 * (d%8==4)) * kronecker(-3, n/d)))};

Formula

Expansion of eta(q) * eta(q^3) * eta(q^4)^4 * eta(q^24)^2 / (eta(q^2) * eta(q^8) * eta(q^12))^2 in powers of q.
Euler transform of period 24 sequence [ -1, 1, -2, -3, -1, 0, -1, -1, -2, 1, -1, -2, -1, 1, -2, -1, -1, 0, -1, -3, -2, 1, -1, -2, ...].
a(n) is multiplicative with a(2) = -1, a(2^e) = -3 * (-1)^e if e>1, a(3^e) = 1, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1 + (-1)^e)/2 if p == 5 (mod 6).
G.f. is a period 1 Fourier series which satisfies f(-1 / (24 t)) = 12^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A123484.
G.f.: x * Product_{k>0} (1 - x^k)^2 * (1 + x^(2*k))^2 * (1 + x^k + x^(2*k)) * (1 - x^(4*k) + x^(8*k))^2.
Moebius transform is period 24 sequence [ 1, -2, 0, -2, -1, 0, 1, 6, 2, -1, 0, 1, -2, 0, -6, -1, 0, 1, 2, 0, 2, -1, 0, ...].
a(2*n) = A244375(n). a(2*n + 1) = A033762(n). a(3*n) = a(n). a(3*n + 1) = A122861(n).
a(4*n) = -3 * A093829(n). a(4*n + 1) = A112604(n). a(4*n + 2) = -A033762(n). a(4*n + 3) = A112605(n).
a(6*n + 1) = A097195(n). a(6*n + 5) = 0.
Expansion of q * f(-q, -q) * f(q^2, q^10) / f(-q, -q^5)^2 in powers of q where f(, ) is Ramanujan's general theta function. - Michael Somos, Oct 12 2015
Sum_{k=1..n} abs(a(k)) ~ (Pi*sqrt(3)/4) * n. - Amiram Eldar, Jan 28 2024

A246650 Expansion of phi(x) * chi(-x) * psi(x^3) in powers of x where phi(), psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, -2, 0, 2, -3, -2, 0, 1, 2, -2, 0, 2, 0, -2, 0, 3, 2, 0, 0, 2, -3, -2, 0, 2, 2, -2, 0, 0, 0, -4, 0, 2, 1, -2, 0, 2, -6, 0, 0, 1, 2, -2, 0, 4, 0, -2, 0, 0, 2, -2, 0, 2, 0, -2, 0, 3, 2, -2, 0, 2, 0, 0, 0, 2, 3, -2, 0, 0, -6, -2, 0, 4, 0, -2, 0, 2, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Aug 31 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x - 2*x^2 + 2*x^4 - 3*x^5 - 2*x^6 + x^8 + 2*x^9 - 2*x^10 + ...
G.f. = q + q^4 - 2*q^7 + 2*q^13 - 3*q^16 - 2*q^19 + q^25 + 2*q^28 - ...
		

Crossrefs

Programs

  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^6 + A)^2 / (eta(x + A) * eta(x^3 + A) * eta(x^4 + A)^2), n))};

Formula

Expansion of q^(-1/3) * eta(q^2)^4 * eta(q^6)^2 / (eta(q) * eta(q^3) * eta(q^4)^2) in powers of q.
a(2*n) = A129451(n). a(4*n) = A123884(n). a(4*n + 1) = A122861(n). a(4*n + 2) = -2 * A121361(n). a(4*n + 3) = 0.
a(8*n) = A131961(n). a(8*n + 1) = A097195(n). a(8*n + 2) = -2 * A131962(n). a(8*n + 4) = 2 * A131963(n). a(8*n + 6) = -2 * A131964(n).
a(16*n + 1) = A123884(n). a(16*n + 5) = -3 * A033687(n). a(16*n + 9) = 2 * A121361(n). a(16*n + 13) = 0.

A246752 Expansion of phi(-x) * chi(x) * psi(-x^3) in powers of x where phi(), psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, -1, -2, 0, 2, 3, -2, 0, 1, -2, -2, 0, 2, 0, -2, 0, 3, -2, 0, 0, 2, 3, -2, 0, 2, -2, -2, 0, 0, 0, -4, 0, 2, -1, -2, 0, 2, 6, 0, 0, 1, -2, -2, 0, 4, 0, -2, 0, 0, -2, -2, 0, 2, 0, -2, 0, 3, -2, -2, 0, 2, 0, 0, 0, 2, -3, -2, 0, 0, 6, -2, 0, 4, 0, -2, 0, 2, 0
Offset: 0

Views

Author

Michael Somos, Sep 02 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x - 2*x^2 + 2*x^4 + 3*x^5 - 2*x^6 + x^8 - 2*x^9 - 2*x^10 + ...
G.f. = q - q^4 - 2*q^7 + 2*q^13 + 3*q^16 - 2*q^19 + q^25 - 2*q^28 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^2] QPochhammer[ x^3] QPochhammer[ x^12] / (QPochhammer[ x^4] QPochhammer[ x^6]), {x, 0, n}];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x] QPochhammer[ -x, x^6] QPochhammer[ -x^5, x^6] QPochhammer[ x^6], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A) / (eta(x^4 + A) * eta(x^6 + A)), n))};

Formula

Expansion of phi(-x) * f(x^1, x^5) in powers of x where phi(), f() are Ramanujan theta functions.
Expansion of q^(-1/3) * eta(q) * eta(q^2) * eta(q^3) * eta(q^12) / (eta(q^4) * eta(q^6)) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 768^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A246838.
a(n) = (-1)^n * A246650(n).
Convolution of A002448 and A089801.
a(2*n) = A129451(n). a(4*n) = A123884(n). a(4*n + 1) = - A122861(n). a(4*n + 2) = - 2 * A121361(n). a(4*n + 3) = 0.

A253625 Expansion of psi(q^2) * f(-q, q^2)^2 / f(-q, -q^5) in powers of q where psi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, -1, 3, -1, 3, 0, 3, -2, 3, -1, 0, 0, 3, -2, 6, 0, 3, 0, 3, -2, 0, -2, 0, 0, 3, -1, 6, -1, 6, 0, 0, -2, 3, 0, 0, 0, 3, -2, 6, -2, 0, 0, 6, -2, 0, 0, 0, 0, 3, -3, 3, 0, 6, 0, 3, 0, 6, -2, 0, 0, 0, -2, 6, -2, 3, 0, 0, -2, 0, 0, 0, 0, 3, -2, 6, -1, 6, 0, 6, -2
Offset: 0

Views

Author

Michael Somos, Jan 06 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - q + 3*q^2 - q^3 + 3*q^4 + 3*q^6 - 2*q^7 + 3*q^8 - q^9 + 3*q^12 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(12), 1), 81); A[1] - A[2] + 3*A[3] - A[4] + 3*A[5];
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], (-1)^ n Sum[(-1)^ Quotient[ d, 3] {1, 1, 0}[[ Mod[d, 3, 1] ]] {1, 2}[[ Mod[n/d, 2, 1] ]], {d, Divisors @ n}]];
    a[ n_] := SeriesCoefficient[ QPochhammer[ q] QPochhammer[ q^3] (QPochhammer[ -q^3, q^6] QPochhammer[ -q^2, q^2])^4, {q, 0, n}];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q^3]^2 EllipticTheta[ 2, 0, q]^2 / (EllipticTheta[ 2, 0, q^(1/2)] EllipticTheta[ 2, 0, q^(3/2)]), {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, (-1)^n * sumdiv(n, d, (-1)^(d\3) * (d%3>0) * (2-(n\d)%2)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A)^4 * eta(x^6 + A)^8 / (eta(x^2 + A)^4 * eta(x^3 + A)^3 * eta(x^12 + A)^4), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); - prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, -3, if( p==3, 1, if( p%6 == 1, e+1, 1-e%2))))))};
    

Formula

Expansion of psi(q^2)^2 * phi(q^3)^2 / (psi(q) * psi(q^3)) = f(-q) * f(-q^3) * (chi(q^3) / chi(-q^2))^4 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of (-a(q) - 3*a(q^2) + 4*a(q^4)) / 6 = b(q^4) * (b(q) + 2*b(q^4)) / (3*b(q^2)) in powers of q where a(), b() are cubic AGM theta functions.
Expansion of eta(q) * eta(q^4)^4 * eta(q^6)^8 / (eta(q^2)^4 * eta(q^3)^3 * eta(q^12)^4) in powers of q.
Euler transform of period 12 sequence [ -1, 3, 2, -1, -1, -2, -1, -1, 2, 3, -1, -2, ...].
Moebius transform is period 12 sequence [ -1, 4, 0, 0, 1, 0, -1, 0, 0, -4, 1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 48^(-1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A253623.
a(n) = -b(n) where b() is multiplicative with b(2^e) = -3 if e>0, b(3^e) = 1, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1 + (-1)^e)/2 if p == 5 (mod 6).
G.f.: 1 + Sum_{k>0} (3 - (k mod 2)*4) * (x^k + x^(3*k)) / (1 + x^(2*k) + x^(4*k)).
G.f.: Product_{k>0} (1 - x^k) * (1 - x^(3*k)) * (1 + x^(3*k))^4 / (1 - x^(2*k) + x^(4*k))^4.
a(n) = (-1)^n * A253626(n). a(2*n) = A107760(n). a(2*n + 1) = - A033762(n). a(3*n) = a(n). a(3*n + 1) = - A122861(n). a(4*n + 1) = - A112604(n). a(4*n + 2) = 3 * A033762(n). a(4*n + 3) = - A112605(n).
a(6*n + 1) = - A097195(n). a(6*n + 2) = 3 * A033687(n). a(6*n + 5) = 0. a(12*n + 1) = - A123884(n). a(12*n + 7) = -2 * A121361(n). a(12*n + 10) = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=0..m} a(k) = Pi/(2*sqrt(3)) = 0.906899... (A093766). - Amiram Eldar, Jun 08 2025

Extensions

Typo in formula fixed by Colin Barker, Jan 08 2015

A253626 Expansion of psi(q^2) * f(q, q^2)^2 / f(q, q^5) in powers of q where psi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 3, 1, 3, 0, 3, 2, 3, 1, 0, 0, 3, 2, 6, 0, 3, 0, 3, 2, 0, 2, 0, 0, 3, 1, 6, 1, 6, 0, 0, 2, 3, 0, 0, 0, 3, 2, 6, 2, 0, 0, 6, 2, 0, 0, 0, 0, 3, 3, 3, 0, 6, 0, 3, 0, 6, 2, 0, 0, 0, 2, 6, 2, 3, 0, 0, 2, 0, 0, 0, 0, 3, 2, 6, 1, 6, 0, 6, 2, 0, 1, 0, 0, 6, 0, 6
Offset: 0

Views

Author

Michael Somos, Jan 06 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + q + 3*q^2 + q^3 + 3*q^4 + 3*q^6 + 2*q^7 + 3*q^8 + q^9 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(12), 1), 86); A[1] + A[2] + 3*A[3] + A[4] + 3*A[5];
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], Sum[ (-1)^ Quotient[ d, 3] {1, 1, 0}[[ Mod[d, 3, 1] ]] {1, 2}[[ Mod[n/d, 2, 1] ]], {d, Divisors @ n}]];
    a[ n_] := SeriesCoefficient[ QPochhammer[ -q] QPochhammer[ -q^3] (QPochhammer[ q^3, q^6] QPochhammer[ -q^2, q^2])^4, {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, sumdiv(n, d, kronecker(-12, d) + if(d%2, 0, 2 * kronecker(-12, d/2))))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^3 * eta(x^4 + A)^3 / ( eta(x + A) * eta(x^2 + A) * eta(x^6 + A) * eta(x^12 + A) ), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 3, if( p==3, 1, if( p%6 == 1, e+1, 1-e%2))))))};
    

Formula

Expansion of psi(q^2)^2 * phi(-q^3)^2 / (psi(-q) * psi(-q^3)) = f(q) * f(q^3) * (chi(-q^3) / chi(-q^2))^4 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of (a(q) + 3*a(q^2) + 2*a(q^4)) / 6 = b(q^4) * (-b(q) + 4*b(q^4)) / (3*b(q^2)) in powers of q where a(), b() are cubic AGM theta functions.
Expansion of eta(q^3)^3 * eta(q^4)^3 / ( eta(q) * eta(q^2) * eta(q^6) * eta(q^12) ) in powers of q.
Euler transform of period 12 sequence [ 1, 2, -2, -1, 1, 0, 1, -1, -2, 2, 1, -2, ...].
Moebius transform is period 12 sequence [ 1, 2, 0, 0, -1, 0, 1, 0, 0, -2, -1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 12^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
a(n) is multiplicative with a(0) = 1, a(2^e) = 3 if e > 0, a(3^e) = 1, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1 + (-1)^e)/2 if p == 5 (mod 6).
G.f.: 1 + Sum_{k>0} (3 - (k mod 2)*2) * (q^k + q^(3*k)) / (1 + q^(2*k) + q^(4*k)).
G.f.: Product_{k>0} (1 - q^(3*k))^3 * (1 - q^(4*k))^3 / ( (1 - q^k) * (1 - q^(2*k)) * (1 - q^(6*k)) * (1 - q^(12*k)) ).
a(n) = (-1)^n * A253625(n). a(2*n) = A107760(n). a(2*n + 1) = A033762(n). a(3*n) = a(n). a(3*n + 1) = A122861(n). a(4*n + 1) = A112604(n). a(4*n + 2) = 3 * A033762(n). a(4*n + 3) = A112605(n).
a(6*n + 1) = A097195(n). a(6*n + 2) = 3 * A033687(n). a(6*n + 5) = 0. a(12*n + 1) = A123884(n). a(12*n + 7) = 2 * A121361(n). a(12*n + 10) = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(3) = 1.813799... (A093602). - Amiram Eldar, Jan 21 2024

A260958 Expansion of (a(q) - 3*a(q^2) + 3*a(q^3) - 4*a(q^4) + 3*a(q^6)) / 6 in powers of q where a() is a cubic AGM theta function.

Original entry on oeis.org

0, 1, -3, 4, -3, 0, 0, 2, -3, 4, 0, 0, 0, 2, -6, 0, -3, 0, 0, 2, 0, 8, 0, 0, 0, 1, -6, 4, -6, 0, 0, 2, -3, 0, 0, 0, 0, 2, -6, 8, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, -3, 0, -6, 0, 0, 0, -6, 8, 0, 0, 0, 2, -6, 8, -3, 0, 0, 2, 0, 0, 0, 0, 0, 2, -6, 4, -6, 0, 0, 2, 0, 4
Offset: 0

Views

Author

Michael Somos, Aug 05 2015

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = x - 3*x^2 + 4*x^3 - 3*x^4 + 2*x^7 - 3*x^8 + 4*x^9 + 2*x^13 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, {1, -3, 4, -3, 1, 0}[[Mod[ n, 6, 1]]] Sum[ {1, 0, 0, 0, -1, 0}[[Mod[ d, 6, 1]]], {d, Divisors @ n}]];
    a[ n_] := If[ n < 1 || Mod[n, 6] == 0, 0, Times @@ (Which[ # == 1, 1, # == 2, -2 - Mod[#2, 2], # == 3, 4, Mod[#, 6] == 5, 1 - Mod[#2, 2], True, #2 + 1] & @@@ FactorInteger @ n)];
    a[ n_] := SeriesCoefficient[ QPochhammer[ x] EllipticTheta[ 3, 0, x^3] QPochhammer[ -x^3, x^6]^2 EllipticTheta[ 2, 0, x^(9/2)] / (2 x^(1/8) QPochhammer[-x, x^2]^2 EllipticTheta[ 3, 0, x^9]), {x, 0, n}];
  • PARI
    {a(n) = if( n<1, 0, [0, 1, -3, 4, -3, 1][n%6+1] * sumdiv(n, d, [0, 1, 0, 0, 0, -1][n/d%6+1]))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^4 + A)^2 * eta(x^6 + A)^9 * eta(x^9 + A) * eta(x^36 + A)^2 / (eta(x^2 + A)^4 * eta(x^3 + A)^4 * eta(x^12 + A)^4 * eta(x^18 + A)^3), n))};

Formula

Expansion of q * f(q) * phi(q^3) * chi(q^3)^2 * psi(q^9) / (chi(q)^2 * phi(q^9)) in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of eta(q)^3 * eta(q^4)^2 * eta(q^6)^9 * eta(q^9) * eta(q^36)^2 / (eta(q^2)^4 * eta(q^3)^4 * eta(q^12)^4 * eta(q^18)^3) in powers of q.
Euler transform of period 36 sequence [ -3, 1, 1, -1, -3, -4, -3, -1, 0, 1, -3, -2, -3, 1, 1, -1, -3, -2, -3, -1, 1, 1, -3, -2, -3, 1, 0, -1, -3, -4, -3, -1, 1, 1, -3, -2, ...].
Moebius transform is period 36 sequence [ 1, -4, 3, 0, -1, 0, 1, 0, 0, 4, -1, 0, 1, -4, -3, 0, -1, 0, 1, 0, 3, 4, -1, 0, 1, -4, 0, 0, -1, 0, 1, 0, -3, 4, -1, 0, ...].
a(2*n) = A113448(n). a(3*n + 1) = A122861(n). a(6*n) = 0. a(6*n + 1) = A097195(n). a(6*n + 2) = a(12*n + 4) = -3 * A033687(n). a(6*n + 3) = 4 * A033762(n). a(6*n + 5) = a(12*n + 10) = 0.
Showing 1-10 of 10 results.