cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A115979 Expansion of (1 - theta_4(q)*theta_4(q^3))/2 in powers of q.

Original entry on oeis.org

1, 0, 1, -3, 0, 0, 2, 0, 1, 0, 0, -3, 2, 0, 0, -3, 0, 0, 2, 0, 2, 0, 0, 0, 1, 0, 1, -6, 0, 0, 2, 0, 0, 0, 0, -3, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, -3, 3, 0, 0, -6, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, -3, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 1, -6, 0, 0, 2, 0, 1, 0, 0, -6, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 2, 0, 0, -3, 0, 0, 2, 0, 0
Offset: 1

Views

Author

Michael Somos, Feb 09 2006

Keywords

Crossrefs

Programs

  • Maple
    S:=series((1-JacobiTheta4(0,q)*JacobiTheta4(0,q^3))/2, q, 106):
    seq(coeff(S,q,n),n=1..105); # Robert Israel, Nov 20 2017
  • Mathematica
    Drop[CoefficientList[Series[(1 -EllipticTheta[4, 0, q]*EllipticTheta[4, 0, q^3])/2, {q, 0, 110}], q], 1] (* G. C. Greubel, May 09 2019 *)
  • PARI
    {a(n)=local(A); if(n<1, 0, A=x*O(x^n); polcoeff( (eta(x+A)*eta(x^3+A))^2/eta(x^2+A)/eta(x^6+A), n)/-2)}
    
  • Sage
    def E(x): return 1 + 2*sum((-1)^k*x^(k^2) for k in (1..50))
    a=((1 - E(x)*E(x^3))/2).series(x, 110).coefficients(x, sparse=False); a[1:] # G. C. Greubel, May 09 2019
  • Scheme
    (define (A115979 n) (- (* (expt -1 n) (A096936 n)))) ;; Follow A096936 for the rest of code. - Antti Karttunen, Nov 20 2017
    

Formula

Expansion of (1-(eta(q)*eta(q^3))^2/(eta(q^2)*eta(q^6)))/2 in powers of q.
Moebius transform is period 12 sequence [1,-1,0,-3,-1,0,1,3,0,1,-1,0,...].
a(n) is multiplicative and a(2^e) = -3(1+(-1)^e)/2 if e>0, a(3^e)=1, a(p^e) = 1+e if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6).
G.f.: Sum_{k>0} x^(k)/(1+x^k+x^(2k)) -4x^(4k)/(1+x^(4k)+x^(8k)).
a(n) = -(-1)^n*A096936(n).
A115978(n) = -2*a(n) if n > 0.

A097109 G.f.: s(2)^2*s(3)^3/(s(1)*s(6)^2), where s(k) = eta(q^k) and eta(q) is Dedekind's function, cf. A010815.

Original entry on oeis.org

1, 1, 0, -2, -3, 0, 0, 2, 0, -2, 0, 0, 6, 2, 0, 0, -3, 0, 0, 2, 0, -4, 0, 0, 0, 1, 0, -2, -6, 0, 0, 2, 0, 0, 0, 0, 6, 2, 0, -4, 0, 0, 0, 2, 0, 0, 0, 0, 6, 3, 0, 0, -6, 0, 0, 0, 0, -4, 0, 0, 0, 2, 0, -4, -3, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, -2, -6, 0, 0, 2, 0, -2, 0, 0, 12, 0, 0, 0, 0, 0, 0, 4, 0, -4, 0, 0, 0, 2, 0, 0, -3, 0, 0, 2, 0
Offset: 0

Views

Author

N. J. A. Sloane, Sep 16 2004

Keywords

Comments

Coefficients are multiplicative [Fine].

References

  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 80, Eq. (32.36).

Crossrefs

Programs

  • Mathematica
    QP = QPochhammer; s = QP[q^2]^2*(QP[q^3]^3/(QP[q]*QP[q^6]^2)) + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015, adapted from PARI *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A)^3 / (eta(x + A) * eta(x^6 + A)^2), n))} /* Michael Somos, Sep 15 2006 */
    
  • PARI
    {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if(p==2, 3*(e%2-1), if( p==3, -2, if( p%6==1, e+1, 1-e%2))))))} /* Michael Somos, Sep 15 2006 */

Formula

Fine gives an explicit formula for a(n) in terms of the divisors of n.
From Michael Somos, Sep 15 2006: (Start)
Expansion of (a(q) - 3*a(q^3) - 4*a(q^4) + 12*a(q^12)) / 6 in powers of q where a() is a cubic AGM theta function.
Euler transform of period 6 sequence [ 1, -1, -2, -1, 1, -2, ...].
a(n) is multiplicative with a(2^e) = -3(1+(-1)^e)/2 if e>0, a(3^e) = -2 if e>0, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6). (End)
a(3*n + 2) = 0. a(3*n) = A115978(n). a(3*n + 1) = A122861(n).
Sum_{k=0..n} abs(a(k)) ~ c * n, where c = 2*Pi/(3*sqrt(3)) = 1.209199... (A248897). - Amiram Eldar, Jan 22 2024

A164272 Expansion of phi(q) * phi(-q^3) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 0, -2, -2, 0, 0, -4, 0, 2, 0, 0, -2, 4, 0, 0, 6, 0, 0, -4, 0, 4, 0, 0, 0, 2, 0, -2, -4, 0, 0, -4, 0, 0, 0, 0, -2, 4, 0, -4, 0, 0, 0, -4, 0, 0, 0, 0, 6, 6, 0, 0, -4, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, -4, 6, 0, 0, -4, 0, 0, 0, 0, 0, 4, 0, -2, -4, 0, 0, -4, 0, 2, 0, 0, -4, 0, 0, 0, 0, 0, 0, -8, 0, 4, 0, 0, 0, 4, 0, 0, -2, 0, 0, -4, 0
Offset: 0

Views

Author

Michael Somos, Aug 11 2009

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q - 2*q^3 - 2*q^4 - 4*q^7 + 2*q^9 - 2*q^12 + 4*q^13 + 6*q^16 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 4, 0, q^3], {q, 0, n}]; (* Michael Somos, Sep 02 2015 *)
    f[x_, y_] := QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; A164272[n_] := SeriesCoefficient[f[q, q]*f[-q^3, -q^3], {q, 0, n}]; Table[A164272[n], {n,0,50}] (* G. C. Greubel, Sep 16 2017 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^3 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^6 + A)), n))};

Formula

Expansion of eta(q^2)^5 * eta(q^3)^2 / (eta(q)^2 * eta(q^4)^2 * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ 2, -3, 0, -1, 2, -4, 2, -1, 0, -3, 2, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (48 t)) = 768^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A112604.
a(n) = (-1)^n * A164273(n).
a(2*n + 1) = 2 * A129449(n). a(4*n) = A115978(n). a(4*n + 1) = 2 * A112604(n). a(4*n + 2) = 0. a(4*n + 3) = -2 * A112605(n).
a(3*n) = A164273(n). a(3*n + 1) = 2 * A246752(n). a(3*n + 2) = 0. - Michael Somos, Sep 02 2015

A217221 Theta series of Kagome net with respect to a deep hole.

Original entry on oeis.org

0, 6, 0, 6, 0, 0, 0, 12, 0, 6, 0, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 12, 0, 0, 0, 6, 0, 6, 0, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 12, 0, 0, 0, 12, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 12, 0, 12, 0, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 6, 0, 0, 0, 12, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 0, 12, 0, 0, 0, 12, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Oct 05 2012

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 6*q + 6*q^3 + 12*q^7 + 6*q^9 + 12*q^13 + 12*q^19 + 12*q^21 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(12), 1), 80); 6*A[2] + 6*A[4]; /* Michael Somos, Feb 01 2017 */
  • Mathematica
    a[ n_] := If[ n < 1 || EvenQ[n], 0, 6 DivisorSum[n, Mod[(3 - #)/2, 3, -1] &]]; (* Michael Somos, Feb 01 2017 *)
  • PARI
    {a(n) = if( n<1 || n%2==0, 0, 6 * sumdiv(n, d, kronecker(-3, d)))}; /* Michael Somos, Feb 01 2017 */
    

Formula

Phi_0(q)-phi_0(q^4) in the notation of SPLAG, Chapter 4.
Expansion of a(q) - a(q^4) in powers of q where a() is a cubic AGM function. - Michael Somos, Feb 01 2017
Expansion of 6 * q * psi(q^2) * psi(q^6) in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Feb 01 2017
Expansion of 6 * (eta(q^4) * eta(q^12))^2 / (eta(q^2) * eta(q^6)) in powers of q. - Michael Somos, Feb 01 2017
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 27^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A115978. - Michael Somos, Feb 01 2017
a(2*n) = 0. a(2*n + 1) = 6 * A033762(n). - Michael Somos, Feb 01 2017
Showing 1-4 of 4 results.