cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122888 Triangle, read by rows, where row n lists the coefficients of x^k, k=1..2^n, in the n-th iteration of (x + x^2) for n>=0.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 3, 6, 9, 10, 8, 4, 1, 1, 4, 12, 30, 64, 118, 188, 258, 302, 298, 244, 162, 84, 32, 8, 1, 1, 5, 20, 70, 220, 630, 1656, 4014, 8994, 18654, 35832, 63750, 105024, 160120, 225696, 293685, 352074, 387820, 391232, 359992, 300664, 226580
Offset: 0

Views

Author

Paul D. Hanna, Sep 18 2006

Keywords

Comments

T(n, k) is the number of strings of length k-1 on the alphabet {1, 2, ..., n} such that between every two occurrences of a letter i there is an occurrence of a letter strictly larger than i. For example, for n = 3, k = 4 we have the strings 121, 131, 232 and the six permutations of 123. - Joel B. Lewis, May 06 2008

Examples

			Triangle begins:
  1;
  1, 1;
  1, 2, 2, 1;
  1, 3, 6, 9, 10, 8, 4, 1;
  1, 4, 12, 30, 64, 118, 188, 258, 302, 298, 244, 162, 84, 32, 8, 1;
  1, 5, 20, 70, 220, 630, 1656, 4014, 8994, 18654, 35832, 63750,...;
  1, 6, 30, 135, 560, 2170, 7916, 27326, 89582, 279622, 832680,...;
  1, 7, 42, 231, 1190, 5810, 27076, 121023, 520626, 2161158,...;
  1, 8, 56, 364, 2240, 13188, 74760, 409836, 2179556, 11271436,...;
  1, 9, 72, 540, 3864, 26628, 177744, 1153740, 7303164, 45179508,...;
  1, 10, 90, 765, 6240, 49260, 378312, 2836548, 20817588,...; ...
Multiplying the g.f. of column k by (1-x)^k, k>=1, with leading zeros,
 yields the g.f. of row k in the triangle A122890:
  1;
  0, 1;
  0, 0, 2;
  0, 0, 1, 5;
  0, 0, 0, 10, 14;
  0, 0, 0, 8, 70, 42;
  0, 0, 0, 4, 160, 424, 132;
  0, 0, 0, 1, 250, 1978, 2382, 429;
  0, 0, 0, 0, 302, 6276, 19508, 12804, 1430; ...
in which the main diagonal is the Catalan numbers,
 and the row sums form the factorials.
		

Crossrefs

Cf. A007018 (row sums), diagonals: A112317, A112319, A122887; A092123 (largest term in row); A122889 (antidiagonal sums); A122890 (related triangle).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, x,
          expand((x-> x+x^2)(b(n-1))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)):
    seq(T(n), n=0..5);  # Alois P. Heinz, Mar 14 2016
  • Mathematica
    f[0][x_] = x; f[n_][x_] := f[n][x] = f[n-1][x+x^2]; row[n_] := CoefficientList[f[n][x], x] // Rest; Table[row[n], {n, 0, 5} ] // Flatten (* Jean-François Alcover, Sep 10 2012 *)
  • Maxima
    T(m,n):=if m=0 and n=1 then 1 else if m=0 and n>1 then 0 else  if m=1 then binomial(1,n-1) else sum(binomial(i,n-i)*T(m-1,i),i,1,n); /* Vladimir Kruchinin, May 19 2012 */
  • PARI
    {T(n,k)=local(F=x+x^2, G=x+x*O(x^k)); if(n<0, 0, for(i=1, n, G=subst(F, x, G)); return(polcoeff(G, k, x)))}
    for(n=0, 6, for(k=1, 2^n, print1(T(n, k), ", ")); print(""))
    

Formula

T(n,k) = [x^k] F_n(x) where F_{n+1}(x) = F_n(x+x^2) for n>=1, with F_0(x)=x.

Extensions

Name changed slightly by Paul D. Hanna, Apr 29 2013