cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A152799 Column 2 of triangle A152798; first differences of A122889.

Original entry on oeis.org

1, 1, 3, 6, 15, 40, 113, 348, 1148, 4045, 15203, 60710, 256688, 1145887, 5386283, 26590338, 137537012, 743766652, 4196681423, 24661702224, 150676068558, 955611495432, 6281965526173, 42745748797360, 300690981532778
Offset: 0

Views

Author

Paul D. Hanna, Dec 23 2008

Keywords

Crossrefs

A122888 Triangle, read by rows, where row n lists the coefficients of x^k, k=1..2^n, in the n-th iteration of (x + x^2) for n>=0.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 3, 6, 9, 10, 8, 4, 1, 1, 4, 12, 30, 64, 118, 188, 258, 302, 298, 244, 162, 84, 32, 8, 1, 1, 5, 20, 70, 220, 630, 1656, 4014, 8994, 18654, 35832, 63750, 105024, 160120, 225696, 293685, 352074, 387820, 391232, 359992, 300664, 226580
Offset: 0

Views

Author

Paul D. Hanna, Sep 18 2006

Keywords

Comments

T(n, k) is the number of strings of length k-1 on the alphabet {1, 2, ..., n} such that between every two occurrences of a letter i there is an occurrence of a letter strictly larger than i. For example, for n = 3, k = 4 we have the strings 121, 131, 232 and the six permutations of 123. - Joel B. Lewis, May 06 2008

Examples

			Triangle begins:
  1;
  1, 1;
  1, 2, 2, 1;
  1, 3, 6, 9, 10, 8, 4, 1;
  1, 4, 12, 30, 64, 118, 188, 258, 302, 298, 244, 162, 84, 32, 8, 1;
  1, 5, 20, 70, 220, 630, 1656, 4014, 8994, 18654, 35832, 63750,...;
  1, 6, 30, 135, 560, 2170, 7916, 27326, 89582, 279622, 832680,...;
  1, 7, 42, 231, 1190, 5810, 27076, 121023, 520626, 2161158,...;
  1, 8, 56, 364, 2240, 13188, 74760, 409836, 2179556, 11271436,...;
  1, 9, 72, 540, 3864, 26628, 177744, 1153740, 7303164, 45179508,...;
  1, 10, 90, 765, 6240, 49260, 378312, 2836548, 20817588,...; ...
Multiplying the g.f. of column k by (1-x)^k, k>=1, with leading zeros,
 yields the g.f. of row k in the triangle A122890:
  1;
  0, 1;
  0, 0, 2;
  0, 0, 1, 5;
  0, 0, 0, 10, 14;
  0, 0, 0, 8, 70, 42;
  0, 0, 0, 4, 160, 424, 132;
  0, 0, 0, 1, 250, 1978, 2382, 429;
  0, 0, 0, 0, 302, 6276, 19508, 12804, 1430; ...
in which the main diagonal is the Catalan numbers,
 and the row sums form the factorials.
		

Crossrefs

Cf. A007018 (row sums), diagonals: A112317, A112319, A122887; A092123 (largest term in row); A122889 (antidiagonal sums); A122890 (related triangle).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, x,
          expand((x-> x+x^2)(b(n-1))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)):
    seq(T(n), n=0..5);  # Alois P. Heinz, Mar 14 2016
  • Mathematica
    f[0][x_] = x; f[n_][x_] := f[n][x] = f[n-1][x+x^2]; row[n_] := CoefficientList[f[n][x], x] // Rest; Table[row[n], {n, 0, 5} ] // Flatten (* Jean-François Alcover, Sep 10 2012 *)
  • Maxima
    T(m,n):=if m=0 and n=1 then 1 else if m=0 and n>1 then 0 else  if m=1 then binomial(1,n-1) else sum(binomial(i,n-i)*T(m-1,i),i,1,n); /* Vladimir Kruchinin, May 19 2012 */
  • PARI
    {T(n,k)=local(F=x+x^2, G=x+x*O(x^k)); if(n<0, 0, for(i=1, n, G=subst(F, x, G)); return(polcoeff(G, k, x)))}
    for(n=0, 6, for(k=1, 2^n, print1(T(n, k), ", ")); print(""))
    

Formula

T(n,k) = [x^k] F_n(x) where F_{n+1}(x) = F_n(x+x^2) for n>=1, with F_0(x)=x.

Extensions

Name changed slightly by Paul D. Hanna, Apr 29 2013

A152798 Triangle defined by T(n,k) = Sum_{j=0..k} C(k,j)*T(n-1,j+k) for n>k>0 with T(n,0)=T(n,n)=1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 6, 6, 4, 1, 1, 1, 12, 15, 10, 5, 1, 1, 1, 27, 40, 29, 15, 6, 1, 1, 1, 67, 113, 93, 49, 21, 7, 1, 1, 1, 180, 348, 310, 180, 76, 28, 8, 1, 1, 1, 528, 1148, 1106, 685, 311, 111, 36, 9, 1, 1, 1, 1676, 4045, 4205, 2748, 1322, 497, 155, 45
Offset: 0

Views

Author

Paul D. Hanna, Dec 23 2008

Keywords

Examples

			Triangle begins:
1;
1, 1;
1, 1, 1;
1, 2, 1, 1;
1, 3, 3, 1, 1;
1, 6, 6, 4, 1, 1;
1, 12, 15, 10, 5, 1, 1;
1, 27, 40, 29, 15, 6, 1, 1;
1, 67, 113, 93, 49, 21, 7, 1, 1;
1, 180, 348, 310, 180, 76, 28, 8, 1, 1;
1, 528, 1148, 1106, 685, 311, 111, 36, 9, 1, 1;
1, 1676, 4045, 4205, 2748, 1322, 497, 155, 45, 10, 1, 1;
1, 5721, 15203, 16912, 11683, 5858, 2323, 750, 209, 55, 11, 1, 1;
1, 20924, 60710, 71858, 52262, 27349, 11230, 3809, 1083, 274, 66, 12, 1, 1; ...
ILLUSTRATE RECURRENCE:
T(6,1) = T(5,1) + T(5,2) = 6 + 6 = 12;
T(7,2) = T(6,2) + 2*T(6,3) + T(6,4) = 6 + 2*4 + 1 = 15;
T(8,3) = T(7,3) + 3*T(7,4) + 3*T(7,5) + T(7,6) = 29 + 3*15 + 3*6 + 1 = 93.
Note that column 1 equals A122889: [1,1,2,3,6,12,27,67,180,528,...]
which is the antidiagonal sums of triangle A122888.
RELATED TRIANGLE A122888 begins:
1;
1, 1;
1, 2, 2, 1;
1, 3, 6, 9, 10, 8, 4, 1;
1, 4, 12, 30, 64, 118, 188, 258, 302, 298, 244, 162, 84, 32, 8, 1;
1, 5, 20, 70, 220, 630, 1656, 4014, 8994, 18654, 35832, 63750,...;
1, 6, 30, 135, 560, 2170, 7916, 27326, 89582, 279622, 832680,...;
1, 7, 42, 231, 1190, 5810, 27076, 121023, 520626, 2161158,...;
1, 8, 56, 364, 2240, 13188, 74760, 409836, 2179556, 11271436,...; ...
in which the g.f. of row n equals the n-th iteration of (x+x^2).
		

Crossrefs

Cf. A122888; columns: A122889, A152799; variant: A101494.

Programs

  • PARI
    T(n, k)=if(n
    				

A152808 Column 3 of triangle A152798; a(n) = A152798(n+3,3).

Original entry on oeis.org

1, 1, 4, 10, 29, 93, 310, 1106, 4205, 16912, 71858, 321921, 1516429, 7493126, 38758968, 209453249, 1180293354, 6923457745, 42206892713, 267002169884, 1750266527588, 11873506488390, 83253781992093, 602667751464027
Offset: 0

Views

Author

Paul D. Hanna, Jan 01 2009

Keywords

Crossrefs

Formula

a(n) = A152798(n+2,3) + 3*A152798(n+2,4) + 3*A152798(n+2,5) + A152798(n+2,6).

A152809 Column 4 of triangle A152798; a(n) = A152798(n+4,4).

Original entry on oeis.org

1, 1, 5, 15, 49, 180, 685, 2748, 11683, 52262, 245357, 1207538, 6217803, 33428738, 187323142, 1092328063, 6618105311, 41600580908, 270931087106, 1825820975565, 12716770294407, 91437668751232, 678020392413506, 5179601279549207
Offset: 0

Views

Author

Paul D. Hanna, Jan 01 2009

Keywords

Crossrefs

Formula

a(n) = A152798(n+3,4) + 4*A152798(n+3,5) + 6*A152798(n+3,6) + 4*A152798(n+3,7) + A152798(n+3,8) for n>0 with a(0)=1.
Showing 1-5 of 5 results.