A122897 Riordan array (1/(1-x), c(x)-1) where c(x) is the g.f. of A000108.
1, 1, 1, 1, 3, 1, 1, 8, 5, 1, 1, 22, 19, 7, 1, 1, 64, 67, 34, 9, 1, 1, 196, 232, 144, 53, 11, 1, 1, 625, 804, 573, 261, 76, 13, 1, 1, 2055, 2806, 2211, 1171, 426, 103, 15, 1, 1, 6917, 9878, 8399
Offset: 0
Examples
Triangle begins 1, 1, 1, 1, 3, 1, 1, 8, 5, 1, 1, 22, 19, 7, 1, 1, 64, 67, 34, 9, 1, 1, 196, 232, 144, 53, 11, 1, 1, 625, 804, 573, 261, 76, 13, 1, 1, 2055, 2806, 2211, 1171, 426, 103, 15, 1, 1, 6917, 9878, 8399, 4979, 2126, 647, 134, 17, 1, 1, 23713, 35072, 31655, 20483, 9878, 3554, 932, 169, 19, 1
Links
Programs
-
Maple
A122897 := proc (n, k) binomial(2*n, n-k) + 2*add(cos((2/3)*Pi*j)*binomial(2*n, n-k-j), j = 1..n-k) end proc: for n from 0 to 10 do seq(A122897(n, k), k = 0..n) end do; # Peter Bala, Feb 21 2018
Formula
T(n,k) = binomial(2*n,n-k) + 2*Sum_{j = 1..n-k} cos((2/3)*Pi*j)* binomial(2*n, n-k-j). - Peter Bala, Feb 21 2018
T(n,k) = k*Sum_{i=0..n-k} C(2*(i+k),i)/(i+k), T(n,0)=1. - Vladimir Kruchinin, Jun 13 2020
Comments