cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122897 Riordan array (1/(1-x), c(x)-1) where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 8, 5, 1, 1, 22, 19, 7, 1, 1, 64, 67, 34, 9, 1, 1, 196, 232, 144, 53, 11, 1, 1, 625, 804, 573, 261, 76, 13, 1, 1, 2055, 2806, 2211, 1171, 426, 103, 15, 1, 1, 6917, 9878, 8399
Offset: 0

Views

Author

Paul Barry, Sep 18 2006

Keywords

Comments

Product of A007318 and A122896. Inverse of Riordan array ((1+x+x^2)/(1+x)^2,x/(1+x)^2). Row sums are A024718.
The n-th row polynomial (in descending powers of x) equals the n-th Taylor polynomial of the rational function (1 - x^2)/(1 + x + x^2) * (1 + x)^(2*n) about 0. For example, for n = 4 we have (1 - x^2)/( 1 + x + x^2) * (1 + x)^8 = (x^4 + 22*x^3 + 19*x^2 + 7*x + 1) + O(x^5). - Peter Bala, Feb 21 2018

Examples

			Triangle begins
  1,
  1,     1,
  1,     3,     1,
  1,     8,     5,     1,
  1,    22,    19,     7,     1,
  1,    64,    67,    34,     9,    1,
  1,   196,   232,   144,    53,   11,    1,
  1,   625,   804,   573,   261,   76,   13,   1,
  1,  2055,  2806,  2211,  1171,  426,  103,  15,   1,
  1,  6917,  9878,  8399,  4979, 2126,  647, 134,  17,  1,
  1, 23713, 35072, 31655, 20483, 9878, 3554, 932, 169, 19, 1
		

Programs

  • Maple
    A122897 := proc (n, k)
      binomial(2*n, n-k) + 2*add(cos((2/3)*Pi*j)*binomial(2*n, n-k-j), j = 1..n-k)
    end proc:
    for n from 0 to 10 do
    seq(A122897(n, k), k = 0..n)
    end do; # Peter Bala, Feb 21 2018

Formula

T(n,k) = binomial(2*n,n-k) + 2*Sum_{j = 1..n-k} cos((2/3)*Pi*j)* binomial(2*n, n-k-j). - Peter Bala, Feb 21 2018
T(n,k) = k*Sum_{i=0..n-k} C(2*(i+k),i)/(i+k), T(n,0)=1. - Vladimir Kruchinin, Jun 13 2020