A122920 Diagonal sums of number triangle A122919.
1, 1, 4, 12, 39, 129, 436, 1498, 5218, 18386, 65420, 234734, 848403, 3086001, 11288412, 41499354, 153247278, 568188606, 2114334312, 7893906144, 29561195238, 111007927386, 417918303144, 1577061975492, 5964172347604, 22601012748124, 85806694043116, 326343785428946, 1243200250005995
Offset: 0
Examples
G.f. = 1 + x + 4*x^2 + 12*x^3 + 39*x^4 + 129*x^5 + 436*x^6 + 1498*x^7 + 5218*x^8 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016. See Appendix B2.
Crossrefs
Cf. A000957.
Programs
-
Mathematica
CoefficientList[Series[((1-x)*(1-2*x-2*x^2-Sqrt[1-4*x])/(2*(2+x)*x^3)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 03 2014 *) Table[9/(16 (-2)^n) + 3 (2n+4)! HypergeometricPFQ[{1, n+5/2, n+3}, {n+2, n+5}, -8]/((n+1)! (n+4)!), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 26 2015 *)
-
PARI
x='x+O('x^66); Vec(((1-x)*(1-2*x-2*x^2-sqrt(1-4*x))/(2*(2+x)*x^3))) \\ Joerg Arndt, May 08 2013
Formula
G.f.: ((1-x)*(1-2*x-2*x^2-sqrt(1-4*x))/(2*(2+x)*x^3)).
Conjecture: 2*n*(n+3)*a(n) - (7*n^2+9*n+4)*a(n-1) - 2*(n+1)*(2*n+1)*a(n-2) = 0. - R. J. Mathar, Nov 05 2012
a(n) ~ 2^(2*n+4) / (3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Feb 03 2014
From Vladimir Reshetnikov, Oct 26 2015: (Start)
a(n) = 9/(16*(-2)^n) + 3*(2*n+4)!*hypergeom([1,n+5/2,n+3], [n+2,n+5], -8)/((n+1)!*(n+4)!).
a(n) = 9/(16*(-2)^n) + 8*2^n*(2*n+5)!!*hypergeom([1,n+7/2], [n+5], -8)/(n+4)! - 4*2^n*(2*n+3)!!*hypergeom([1,n+5/2], [n+4], -8)/(n+3)!. (End)
G.f. A(x) =: y satisfies 0 = (1 - x)^2 - y*(1 - 3*x + 2*x^3) + y^2*(2*x^3 + x^4). - Michael Somos, Oct 26 2015
0 = a(n)*(+16*a(n+1) - 26*a(n+2) - 98*a(n+3) + 36*a(n+4)) + a(n+1)*(+50*a(n+1) + 35*a(n+2) - 179*a(n+3) + 46*a(n+4)) + a(n+2)*(+105*a(n+2) + 47*a(n+3) - 50*a(n+4)) + a(n+3)*(+14*a(n+3) + 4*a(n+4)) for all n>=0. - Michael Somos, Oct 26 2015
Comments