A122936 2-Round numbers: numbers n such that every number less than n and relatively prime to n has at most two prime factors (counting multiplicities).
1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120, 150, 180, 210, 240, 270, 300, 330, 420, 630, 840, 1050, 1260
Offset: 1
References
- Dickson, History of the Theory of Numbers, Vol. I, Chelsea, New York, 1952, p. 134.
Links
- H. Bonse, Über eine bekannte Eigenshaft der Zahl 30 und ihre Verallgemeinerung, Archiv d. Math. u. Physik (3) vol. 12 (1907) 292-295. See page 295.
Programs
-
Mathematica
Omega[n_] := If[n==1, 0, Plus@@(Transpose[FactorInteger[n]][[2]])]; nn=1260; r=2; moreThanR=Select[Range[nn], Omega[ # ]>r&]; lst={1}; Do[s=Select[Range[n],GCD[n,# ]==1&]; If[Intersection[s,moreThanR]=={}, AppendTo[lst,n]], {n,2,nn}]; lst tpfQ[n_] :=Max[PrimeOmega /@ Select[Range[n - 1], CoprimeQ[#, n] &]] < 3; Select[Range[1300],tpfQ] (* Harvey P. Dale, Mar 16 2016 *)
Comments