A122946 a(0)=a(1)=0, a(2)=2; for n >= 3, a(n) = a(n-1) + 4*a(n-3).
0, 0, 2, 2, 2, 10, 18, 26, 66, 138, 242, 506, 1058, 2026, 4050, 8282, 16386, 32586, 65714, 131258, 261602, 524458, 1049490, 2095898, 4193730, 8391690, 16775282, 33550202, 67116962, 134218090, 268418898, 536886746, 1073759106, 2147434698, 4294981682, 8590018106
Offset: 0
Links
- A.H.M. Smeets, Table of n, a(n) for n = 0..300
- Bruce Reznick, Regularity properties of the Stern enumeration of the rationals, arXiv:math/0610601 [math.NT], 2006.
- Index entries for linear recurrences with constant coefficients, signature (1,0,4).
Programs
-
Mathematica
LinearRecurrence[{1,0,4},{0,0,2},36] (* James C. McMahon, Jan 16 2024 *)
-
PARI
a0=a1=0;a2=2;for(n=3,50,a3=a2+4*a0;a0=a1;a1=a2;a2=a3;print1(a3,","))
Formula
a(n) = (1/7)*2^(-2 + n/2)*(7*2^(n/2) - 7*cos(n*(Pi - arctan(sqrt(7)))) + 5*sqrt(7)*sin(n*(-Pi + arctan(sqrt(7))))). - Zak Seidov, Oct 26 2006
G.f.: 2*x^2 / ((1-2*x)*(2*x^2+x+1)). - Colin Barker, Jun 20 2013
a(n) = 2 * A089977(n-2) for n >= 2. - Alois P. Heinz, Jan 16 2024
From A.H.M. Smeets, Jan 16 2024: (Start)
Limit_{n -> oo} a(n)/a(n-1) = 2.
a(n) = 2^(n-2) + A110512(n-2), for n >= 2. (End)
Extensions
Entries checked by Zak Seidov, Oct 26 2006
Comments