A139571
Numbers with 31 divisors.
Original entry on oeis.org
1073741824, 205891132094649, 931322574615478515625, 22539340290692258087863249, 17449402268886407318558803753801, 2619995643649944960380551432833049
Offset: 1
A206852
Numbers N such that N/2 is a square, N/3 is a cube, and N/5 is a fifth power.
Original entry on oeis.org
30233088000000, 32462531054272512000000, 6224724715037147546112000000, 34856377305871210027941888000000, 28156757354736328125000000000000000, 6683747269421867033919422988288000000, 681433858470444619689081338982912000000
Offset: 1
- Georg Fischer, Table of n, a(n) for n = 1..1000
- Shyam Sunder Gupta, Do you know, as of Feb 15 2012.
- Michael Penn, a sunny number puzzle!, YouTube video, 2021.
- Index entries for linear recurrences with constant coefficients, signature (31, -465, 4495, -31465, 169911, -736281, 2629575, -7888725, 20160075, -44352165, 84672315, -141120525, 206253075, -265182525, 300540195, -300540195, 265182525, -206253075, 141120525, -84672315, 44352165, -20160075, 7888725, -2629575, 736281, -169911, 31465, -4495, 465, -31, 1).
-
Table[30233088000000 * n^30, {n,1,1000}] (* Georg Fischer, Feb 07 2021 *)
-
{is_A206852(n)=(n=divrem(n,3^10*5^6<<15))[2]==0 && ispower(n[1],30)} \\ replacing obsolete PARI code from 2012. - M. F. Hasler, Jul 22 2022
-
a(n)=30233088000000*n^30 \\ Charles R Greathouse IV, Apr 25 2012
-
def A206852(n): return 30233088000000*n**30 # M. F. Hasler, Jul 24 2022
-
def is_A206852(n):
for p in (2, 3, 5):
for e in range(n):
if n % p: break
n //= p
if e % 30 != 30//p: return False
return is_A122971(n) # M. F. Hasler, Jul 24 2022
A276377
60th powers: a(n) = n^60.
Original entry on oeis.org
0, 1, 1152921504606846976, 42391158275216203514294433201, 1329227995784915872903807060280344576, 867361737988403547205962240695953369140625, 48873677980689257489322752273774603865660850176
Offset: 0
Showing 1-3 of 3 results.
Comments