cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123011 a(n) = 2*a(n-1) + 5*a(n-2) for n > 1; a(0) = 1, a(1) = 5.

Original entry on oeis.org

1, 5, 15, 55, 185, 645, 2215, 7655, 26385, 91045, 314015, 1083255, 3736585, 12889445, 44461815, 153370855, 529050785, 1824955845, 6295165615, 21715110455, 74906048985, 258387650245, 891305545415, 3074549342055
Offset: 0

Views

Author

Roger L. Bagula, Sep 23 2006

Keywords

Crossrefs

Programs

  • Magma
    [ n le 2 select 4*n-3 else 2*Self(n-1)+5*Self(n-2): n in [1..24] ]; // Klaus Brockhaus, Aug 15 2009
    
  • Mathematica
    LinearRecurrence[{2,5}, {1,5}, 31] (* G. C. Greubel, Jul 13 2021 *)
  • Sage
    [1]+[(sqrt(5)*i)^(n-1)*(sqrt(5)*i*chebyshev_U(n, -i/sqrt(5)) + 3*chebyshev_U(n-1, -i/sqrt(5))) for n in (1..30)] # G. C. Greubel, Jul 13 2021

Formula

a(n) = ((3+2*sqrt(6))*(1+sqrt(6))^n + (3-2*sqrt(6))*(1-sqrt(6))^n)/6. - Klaus Brockhaus, Aug 15 2009
From Klaus Brockhaus, Aug 15 2009: (Start)
G.f.: (1+3*x)/(1-2*x-5*x^2).
Binomial transform of A164532.
Inverse binomial transform of A164549. (End)
a(n) = (sqrt(5)*i)^(n-1)*(sqrt(5)*i*ChebyshevU(n, -i/sqrt(5)) + 3*ChebyshevU(n-1, -i/sqrt(5))) for n > 0 with a(0) = 1. - G. C. Greubel, Jul 13 2021

Extensions

Edited by N. J. A. Sloane, Aug 27 2009, using simpler definition suggested by Klaus Brockhaus, Aug 15 2009