cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A106872 Primes of the form 2x^2+xy+4y^2.

Original entry on oeis.org

2, 5, 7, 19, 41, 59, 71, 97, 101, 103, 107, 109, 113, 157, 163, 191, 193, 211, 233, 257, 281, 307, 311, 317, 359, 373, 397, 419, 421, 439, 443, 467, 479, 503, 541, 547, 563, 593, 599, 659, 661, 683, 691, 701, 727, 733, 751, 769, 877, 887, 907, 977, 997, 1033
Offset: 1

Views

Author

T. D. Noe, May 09 2005

Keywords

Comments

Discriminant=-31.
Primes p such that the polynomial x^3-x^2-1 is irreducible over Zp. The polynomial discriminant is also -31. - T. D. Noe, May 13 2005

Crossrefs

Primes in A123064.

Programs

  • Mathematica
    Union[QuadPrimes2[2, 1, 4, 10000], QuadPrimes2[2, -1, 4, 10000]] (* see A106856 *)

A123063 Theta series of lattice with Gram matrix [4,1;1,8].

Original entry on oeis.org

1, 0, 2, 0, 2, 2, 0, 2, 2, 0, 2, 0, 0, 0, 2, 0, 4, 0, 2, 2, 4, 0, 0, 0, 0, 2, 0, 0, 4, 0, 0, 0, 4, 0, 0, 2, 2, 0, 2, 0, 6, 2, 0, 0, 0, 2, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 6, 0, 0, 2, 0, 0, 2, 2, 4, 0, 0, 0, 0, 0, 6, 2, 2, 0, 0, 0, 4, 0, 0, 0, 6, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 4, 2, 0, 2, 4, 0, 6, 2, 0, 2, 0
Offset: 0

Views

Author

N. J. A. Sloane, Sep 27 2006

Keywords

Comments

a(n) = number of solutions to n = 2*x^2 + x*y + 4*y^2 in integers, hence a(n) nonzero if and only if n is in A123064 and p is prime and a(p) = 2 if and only if p is in A106872. - Michael Somos, Jul 16 2011

Examples

			G.f. = 1 + 2*x^2 + 2*x^4 + 2*x^5 + 2*x^7 + 2*x^8 + 2*x^10 + 2*x^14 + 4*x^16 + 2*x^18 + ...
G.f. =  1 + 2*q^4 + 2*q^8 + 2*q^10 + 2*q^14 + 2*q^16 + 2*q^20 + 2*q^28 + 4*q^32 + ...
		

References

  • J. H. Conway, The Sensual (Quadratic) Form, M.A.A., 1997, p. 82.

Crossrefs

Programs

  • Magma
    L:=LatticeWithGram(2, [4,1,1,8] ); T := ThetaSeries(L,500); T;
    
  • Magma
    A := Basis( ModularForms( Gamma1(31), 1), 103); A[1] + 2*A[3] + 2*A[5] + 2*A[6] + 2*A[8] + 2*A[9] + 2*A[11] + 2*A[15]; /* Michael Somos, Jun 14 2014 */
    
  • Magma
    a := func ; /* Michael Somos, Jun 14 2014 */
  • Mathematica
    terms = 105; max = terms+3; s = Sum[x^(2*n^2 + n*m + 4*m^2), {n, -max, max}, {m, -max, max}] + O[x]^max; CoefficientList[s, x][[1 ;; terms]] (* Jean-François Alcover, Jul 05 2017 *)
  • PARI
    {a(n) = if( n<1, n==0, qfrep( [4, 1; 1, 8], n, 1)[n] * 2)}; /* Michael Somos, Sep 28 2006 */
    

Formula

G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u6*u1^3 + 2*u3*u2^3 - 3*u3^3*u2 - 6*u6^3*u1 + 6*u6*u2^2*u1 - 6*u3*u2^2*u1 + 3*u3*u2*u1^2 - 6*u6*u2*u1^2 - 9*u6*u3^2*u1 - 18*u6^2*u3*u2 + 18*u6*u3^2*u2 + 18*u6^2*u3*u1. - Michael Somos, Sep 28 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (31 t)) = 31^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Jul 16 2011
G.f.: Sum_{n,m in Z} x^(2*n^2 + n*m + 4*m^2).

A123065 Numbers primitively represented by the quadratic form 2 x^2 + xy + 4 y^2.

Original entry on oeis.org

2, 4, 5, 7, 10, 14, 16, 19, 20, 25, 28, 32
Offset: 1

Views

Author

N. J. A. Sloane, Sep 27 2006

Keywords

References

  • J. H. Conway, The Sensual (Quadratic) Form, M.A.A., 1997, p. 82.

Crossrefs

A123067 Theta series of the "Little Methuselah" quadratic form x^2 + 2*y^2 + y*z + 4*z^2.

Original entry on oeis.org

1, 2, 2, 4, 4, 6, 8, 2, 10, 10, 2, 12, 4, 4, 10, 4, 10, 12, 10, 10, 20, 12, 4, 12, 12, 12, 8, 8, 8, 24, 8, 0, 24, 12, 8, 10, 24, 12, 6, 12, 14, 38, 8, 8, 32, 18, 8, 4, 8, 20, 20, 16, 12, 16, 24, 4, 30, 28, 4, 14, 20, 12, 2, 18, 18, 44, 20, 8, 28, 12, 10, 26, 30, 12, 28, 16, 20, 20, 8, 16, 34
Offset: 0

Views

Author

N. J. A. Sloane, Sep 27 2006, corrected Oct 26 2006

Keywords

Comments

The Little Methuselah form represents every integer from 1 to 30, but fails to represent 31. Every integer-valued positive definite ternary form not equivalent to it fails to represent some integer between 1 and 30. [Conway]

Examples

			1 + 2*x + 2*x^2 + 4*x^3 + 4*x^4 + 6*x^5 + 8*x^6 + 2*x^7 + 10*x^8 + 10*x^9 + 2*x^10 + ...
		

References

  • J. H. Conway, The Sensual (Quadratic) Form, M.A.A., 1997, pp. 81-82.

Crossrefs

Programs

  • Magma
    L:=LatticeWithGram(3, [2,0,0,0,4,1,0,1,8] ); T := ThetaSeries(L,500); T;
    
  • PARI
    {a(n)= if(n<1, n==0, qfrep([2, 0, 0; 0, 4, 1; 0, 1, 8],n, 1)[n]*2)} /* Michael Somos, Oct 23 2006 */

A123068 Numbers represented by the "Little Methuselah" quadratic form x^2 + 2*y^2 + y*z + 4*z^2.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
Offset: 1

Views

Author

N. J. A. Sloane, Sep 27 2006

Keywords

Comments

Theorem (Conway, p. 81) This ternary form represents every number from 0 to 32 except 31. Any other integer-valued ternary form not equivalent to this one fails to represent some number between 1 and 30.

Examples

			1+2*x+2*x^2+4*x^3+4*x^4+6*x^5+8*x^6+2*x^7+10*x^8+10*x^9+2*x^10+...
		

References

  • J. H. Conway, The Sensual (Quadratic) Form, M.A.A., 1997, p. 82.

Crossrefs

Programs

  • Magma
    L:=LatticeWithGram(3, [2,0,0,0,4,1,0,1,8] ); T := ThetaSeries(L,500); T;

A106871 Primes of the form 2x^2+xy+4y^2, with x and y nonnegative.

Original entry on oeis.org

2, 7, 41, 59, 101, 107, 109, 233, 257, 281, 307, 311, 397, 419, 421, 503, 599, 659, 691, 733, 751, 907, 1051, 1061, 1087, 1103, 1163, 1217, 1249, 1279, 1291, 1307, 1321, 1361, 1373, 1433, 1471, 1489, 1597, 1621, 1693, 1733, 1777, 1787, 1831
Offset: 1

Views

Author

T. D. Noe, May 09 2005

Keywords

Comments

Discriminant=-31.

Crossrefs

Programs

  • Mathematica
    QuadPrimes2[2, 1, 4, 10000] (* see A106856 *)

A106873 Primes of the form 2x^2-xy+4y^2, with x and y nonnegative.

Original entry on oeis.org

2, 5, 19, 71, 97, 103, 113, 157, 163, 191, 193, 211, 317, 359, 373, 439, 443, 467, 479, 541, 547, 563, 593, 661, 683, 701, 727, 769, 877, 887, 977, 997, 1033, 1039, 1093, 1123, 1151, 1223, 1229, 1289, 1399, 1409, 1423, 1427, 1459, 1601, 1609, 1613
Offset: 1

Views

Author

T. D. Noe, May 09 2005

Keywords

Comments

Discriminant=-31.

Crossrefs

Programs

  • Mathematica
    QuadPrimes2[2, -1, 4, 10000] (* see A106856 *)
Showing 1-7 of 7 results.