cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A123064 Numbers represented by the quadratic form 2 x^2 + xy + 4 y^2.

Original entry on oeis.org

0, 2, 4, 5, 7, 8, 10, 14, 16, 18, 19, 20, 25, 28, 32, 35, 36, 38, 40, 41, 45, 49, 50, 56, 59, 62, 63, 64, 70, 71, 72, 76, 80, 82, 90, 94, 95, 97, 98, 100, 101, 103, 107, 109, 112, 113, 118, 124, 125, 126, 128, 133, 134, 140, 142, 144, 152, 155, 157, 160, 162, 163, 164, 171, 175
Offset: 1

Views

Author

N. J. A. Sloane, Sep 27 2006

Keywords

References

  • J. H. Conway, The Sensual (Quadratic) Form, M.A.A., 1997, p. 82.

Crossrefs

Programs

  • Magma
    L:=LatticeWithGram(2, [4,1,1,8] ); T := ThetaSeries(L,500); T;

A123063 Theta series of lattice with Gram matrix [4,1;1,8].

Original entry on oeis.org

1, 0, 2, 0, 2, 2, 0, 2, 2, 0, 2, 0, 0, 0, 2, 0, 4, 0, 2, 2, 4, 0, 0, 0, 0, 2, 0, 0, 4, 0, 0, 0, 4, 0, 0, 2, 2, 0, 2, 0, 6, 2, 0, 0, 0, 2, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 6, 0, 0, 2, 0, 0, 2, 2, 4, 0, 0, 0, 0, 0, 6, 2, 2, 0, 0, 0, 4, 0, 0, 0, 6, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 4, 2, 0, 2, 4, 0, 6, 2, 0, 2, 0
Offset: 0

Views

Author

N. J. A. Sloane, Sep 27 2006

Keywords

Comments

a(n) = number of solutions to n = 2*x^2 + x*y + 4*y^2 in integers, hence a(n) nonzero if and only if n is in A123064 and p is prime and a(p) = 2 if and only if p is in A106872. - Michael Somos, Jul 16 2011

Examples

			G.f. = 1 + 2*x^2 + 2*x^4 + 2*x^5 + 2*x^7 + 2*x^8 + 2*x^10 + 2*x^14 + 4*x^16 + 2*x^18 + ...
G.f. =  1 + 2*q^4 + 2*q^8 + 2*q^10 + 2*q^14 + 2*q^16 + 2*q^20 + 2*q^28 + 4*q^32 + ...
		

References

  • J. H. Conway, The Sensual (Quadratic) Form, M.A.A., 1997, p. 82.

Crossrefs

Programs

  • Magma
    L:=LatticeWithGram(2, [4,1,1,8] ); T := ThetaSeries(L,500); T;
    
  • Magma
    A := Basis( ModularForms( Gamma1(31), 1), 103); A[1] + 2*A[3] + 2*A[5] + 2*A[6] + 2*A[8] + 2*A[9] + 2*A[11] + 2*A[15]; /* Michael Somos, Jun 14 2014 */
    
  • Magma
    a := func ; /* Michael Somos, Jun 14 2014 */
  • Mathematica
    terms = 105; max = terms+3; s = Sum[x^(2*n^2 + n*m + 4*m^2), {n, -max, max}, {m, -max, max}] + O[x]^max; CoefficientList[s, x][[1 ;; terms]] (* Jean-François Alcover, Jul 05 2017 *)
  • PARI
    {a(n) = if( n<1, n==0, qfrep( [4, 1; 1, 8], n, 1)[n] * 2)}; /* Michael Somos, Sep 28 2006 */
    

Formula

G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u6*u1^3 + 2*u3*u2^3 - 3*u3^3*u2 - 6*u6^3*u1 + 6*u6*u2^2*u1 - 6*u3*u2^2*u1 + 3*u3*u2*u1^2 - 6*u6*u2*u1^2 - 9*u6*u3^2*u1 - 18*u6^2*u3*u2 + 18*u6*u3^2*u2 + 18*u6^2*u3*u1. - Michael Somos, Sep 28 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (31 t)) = 31^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Jul 16 2011
G.f.: Sum_{n,m in Z} x^(2*n^2 + n*m + 4*m^2).

A106871 Primes of the form 2x^2+xy+4y^2, with x and y nonnegative.

Original entry on oeis.org

2, 7, 41, 59, 101, 107, 109, 233, 257, 281, 307, 311, 397, 419, 421, 503, 599, 659, 691, 733, 751, 907, 1051, 1061, 1087, 1103, 1163, 1217, 1249, 1279, 1291, 1307, 1321, 1361, 1373, 1433, 1471, 1489, 1597, 1621, 1693, 1733, 1777, 1787, 1831
Offset: 1

Views

Author

T. D. Noe, May 09 2005

Keywords

Comments

Discriminant=-31.

Crossrefs

Programs

  • Mathematica
    QuadPrimes2[2, 1, 4, 10000] (* see A106856 *)

A106873 Primes of the form 2x^2-xy+4y^2, with x and y nonnegative.

Original entry on oeis.org

2, 5, 19, 71, 97, 103, 113, 157, 163, 191, 193, 211, 317, 359, 373, 439, 443, 467, 479, 541, 547, 563, 593, 661, 683, 701, 727, 769, 877, 887, 977, 997, 1033, 1039, 1093, 1123, 1151, 1223, 1229, 1289, 1399, 1409, 1423, 1427, 1459, 1601, 1609, 1613
Offset: 1

Views

Author

T. D. Noe, May 09 2005

Keywords

Comments

Discriminant=-31.

Crossrefs

Programs

  • Mathematica
    QuadPrimes2[2, -1, 4, 10000] (* see A106856 *)

A107662 -n is the discriminant of cubic polynomials irreducible over Zp for primes p represented by only one binary quadratic form.

Original entry on oeis.org

23, 31, 44, 59, 76, 83, 107, 108, 139, 172, 211, 243, 268, 283, 307, 331, 379, 499, 547, 643, 652, 883, 907
Offset: 1

Views

Author

T. D. Noe, May 19 2005

Keywords

Comments

Let f(x) be any monic integral cubic polynomial with discriminant -n and irreducible over Z. Consider the set S of primes p such that f(x) has no zeros in Zp, i.e., f(x) is irreducible in Zp. For the discriminants -n in this sequence, set S coincides with the primes represented by one binary quadratic form ax^2+bxy+cy^2 with -n=b^2-4ac. For examples, see A106867, A106872, A106282, A106919, A106954, A106967, A040034 and A040038. This sequence consists of (1) terms 4d in A106312 such that the class number of d is 1, (2) terms d in A106312 such that the class number of d is 3 and (3) 108 and 243.

Examples

			For each -n, we give (-n,a,b,c) for the quadratic form ax^2+bxy+cy^2: (23,2,1,3), (31,2,1,4), (44,3,2,4), (59,3,1,5), (76,4,2,5), (83,3,1,7), (107,3,1,9), (108,4,2,7), (139,5,1,7), (172,4,2,11), (211,5,3,11), (243,7,3,9), (268,4,2,17), (283,7,5,11), (307,7,1,11), (331,5,3,17), (379,5,1,19), (499,5,1,25), (547,11,5,13), (643,7,1,23), (652,4,2,41), (883,13,1,17) and (907,13,9,19).
		

References

  • Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012.
  • Blair K. Spearman and Kenneth S. Williams, The cubic congruence x^3+Ax^2+Bx+C = 0 (mod p) and binary quadratic forms, J. London Math. Soc., 46, (1992), 397-410.

Crossrefs

Cf. A106312 (possible negative discriminants of cubic polynomials), A014602 (negative discriminants having class number 1), A006203 (negative discriminants having class number 3).
Showing 1-5 of 5 results.