A123092 Decimal expansion of Sum_{k>=1} 1/((2k-1)^2(2k+1)^2) = (Pi^2-8)/16.
1, 1, 6, 8, 5, 0, 2, 7, 5, 0, 6, 8, 0, 8, 4, 9, 1, 3, 6, 7, 7, 1, 5, 5, 6, 8, 7, 4, 9, 2, 2, 5, 9, 4, 4, 5, 9, 5, 7, 1, 0, 6, 2, 1, 2, 9, 5, 2, 5, 4, 9, 4, 1, 4, 1, 5, 0, 8, 3, 4, 3, 3, 6, 0, 1, 3, 7, 5, 2, 8, 0, 1, 4, 0, 1, 2, 0, 0, 3, 2, 7, 6, 8, 7, 6, 1, 0, 8, 3, 7, 7, 3, 2, 4, 0, 9, 5, 1, 4, 4, 8, 9, 0, 0, 1
Offset: 0
Examples
0.116850275068084913677155687492259445957106212952549414150834336...
References
- Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley and Sons, Inc., NJ, 2006, page 506.
Programs
-
Mathematica
RealDigits[Sum[1/((2k - 1)^2(2k + 1)^2), {k, Infinity}], 10, 111][[1]]
-
PARI
(Pi^2-8)/16 \\ Charles R Greathouse IV, Sep 30 2022
Formula
Equals (A111003-1)/2. - Hugo Pfoertner, Aug 20 2024
Equals Sum_{k>=1} 1/(4*k^2-1)^2. - Sean A. Irvine, Mar 29 2025