cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A222068 Decimal expansion of (1/16)*Pi^2.

Original entry on oeis.org

6, 1, 6, 8, 5, 0, 2, 7, 5, 0, 6, 8, 0, 8, 4, 9, 1, 3, 6, 7, 7, 1, 5, 5, 6, 8, 7, 4, 9, 2, 2, 5, 9, 4, 4, 5, 9, 5, 7, 1, 0, 6, 2, 1, 2, 9, 5, 2, 5, 4, 9, 4, 1, 4, 1, 5, 0, 8, 3, 4, 3, 3, 6, 0, 1, 3, 7, 5, 2, 8, 0, 1, 4, 0, 1, 2, 0, 0, 3, 2, 7, 6, 8, 7, 6, 1, 0, 8, 3, 7, 7, 3, 2, 4, 0, 9, 5, 1, 4, 4, 8, 9, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2013

Keywords

Comments

Conjectured to be density of densest packing of equal spheres in four dimensions (achieved for example by the D_4 lattice).
From Hugo Pfoertner, Aug 29 2018: (Start)
Also decimal expansion of Sum_{k>=0} (-1)^k*d(2*k+1)/(2*k+1), where d(n) is the number of divisors of n A000005(n).
Ramanujan's question 770 in the Journal of the Indian Mathematical Society (VIII, 120) asked "If d(n) denotes the number of divisors of n, show that d(1) - d(3)/3 + d(5)/5 - d(7)/7 + d(9)/9 - ... is a convergent series ...".
A summation of the first 2*10^9 terms performed by Hans Havermann yields 0.6168503077..., which is close to (Pi/4)^2=0.616850275...
(End)
From Robert Israel, Aug 31 2018: (Start)
Modulo questions about rearrangement of conditionally convergent series, which I expect a more careful treatment would handle, Sum_{k>=0} (-1)^k*d(2*k+1)/(2*k+1) should indeed be Pi^2/16.
Sum_{k>=0} (-1)^k d(2k+1)/(2k+1)
= Sum_{k>=0} Sum_{2i+1 | 2k+1} (-1)^k/(2k+1)
(letting 2k+1=(2i+1)(2j+1): note that k == i+j (mod 2))
= Sum_{i>=0} Sum_{j>=0} (-1)^(i+j)/((2i+1)(2j+1))
= (Sum_{i>=0} (-1)^i/(2i+1))^2 = (Pi/4)^2. (End)
Volume bounded by the surface (x+y+z)^2-2(x^2+y^2+z^2)=4xyz, the ellipson (see Wildberger, p. 287). - Patrick D McLean, Dec 03 2020

Examples

			0.6168502750680849136771556874922594459571...
		

References

  • S. D. Chowla, Solution and Remarks on Question 770, J. Indian Math. Soc. 17 (1927-28), 166-171.
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer, 3rd. ed., 1998. See p. xix.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.7, p. 507.
  • S. Ramanujan, Coll. Papers, Chelsea, 1962, Question 770, page 333.
  • G. N. Watson, Solution to Question 770, J. Indian Math. Soc. 18 (1929-30), 294-298.

Crossrefs

Programs

Formula

Equals A003881^2. - Bruno Berselli, Feb 11 2013
Equals A123092+1/2. - R. J. Mathar, Feb 15 2013
Equals Integral_{x>0} x^2*log(x)/((1+x)^2*(1+x^2)) dx. - Jean-François Alcover, Apr 29 2013
Equals the Bessel moment integral_{x>0} x*I_0(x)*K_0(x)^3. - Jean-François Alcover, Jun 05 2016
Equals Sum_{k>=1} zeta(2*k)*k/4^k. - Amiram Eldar, May 29 2021

A069075 a(n) = (4*n^2 - 1)^2.

Original entry on oeis.org

1, 9, 225, 1225, 3969, 9801, 20449, 38025, 65025, 104329, 159201, 233289, 330625, 455625, 613089, 808201, 1046529, 1334025, 1677025, 2082249, 2556801, 3108169, 3744225, 4473225, 5303809, 6245001, 7306209, 8497225, 9828225, 11309769
Offset: 0

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

Comments

Products of squares of 2 successive odd numbers. - Peter Munn, Nov 17 2019

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961.
  • Konrad Knopp, Theory and application of infinite series, Dover, 1990, p. 269.

Crossrefs

Programs

  • Mathematica
    (4*Range[0,30]^2-1)^2 (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,9,225,1225,3969},30] (* Harvey P. Dale, Feb 23 2018 *)

Formula

Sum_{n>=1} 1/a(n) = (Pi^2 - 8)/16 = 0.1168502750680... (A123092) [Jolley eq. 247]
G.f.: (-1 - 4*x - 190*x^2 - 180*x^3 - 9*x^4) / (x-1)^5. - R. J. Mathar, Oct 03 2011
a(n) = A000466(n)^2. - Peter Munn, Nov 17 2019
E.g.f.: exp(x)*(1 + 8*x + 104*x^2 + 96*x^3 + 16*x^4). - Stefano Spezia, Nov 17 2019
Sum_{n>=0} (-1)^n/a(n) = Pi/8 + 1/2. - Amiram Eldar, Feb 08 2022

A248895 Decimal expansion of Sum_{i >= 1} 1/(4*i^2-1)^3.

Original entry on oeis.org

0, 3, 7, 3, 6, 2, 2, 9, 3, 6, 9, 8, 9, 3, 6, 3, 1, 4, 7, 4, 2, 1, 3, 3, 2, 3, 4, 3, 8, 0, 8, 0, 5, 4, 1, 5, 5, 3, 2, 1, 7, 0, 3, 4, 0, 2, 8, 5, 5, 8, 7, 9, 3, 9, 3, 8, 6, 8, 7, 4, 2, 4, 7, 9, 8, 9, 6, 8, 5, 3, 9, 8, 9, 4, 9, 0, 9, 9, 7, 5, 4, 2, 3, 4, 2, 9, 1
Offset: 0

Views

Author

Bruno Berselli, Mar 06 2015

Keywords

Examples

			0.0373622936989363147421332343808054155321703402855879393868742479896853989...
		

Crossrefs

Cf. A123092: Sum_{i >= 1} 1/(4*i^2-1)^2.
Cf. A248896: Sum_{i >= 1} 1/(4*i^2-1)^4.

Programs

  • Mathematica
    Join[{0}, RealDigits[1/2 - 3 (Pi/8)^2, 10, 100][[1]]]

Formula

Equals 1/2 - 3*(Pi/8)^2.

A248896 Decimal expansion of Sum_{i >= 1} 1/(4*i^2-1)^4.

Original entry on oeis.org

0, 1, 2, 3, 6, 6, 1, 7, 5, 8, 6, 8, 0, 7, 7, 0, 7, 7, 8, 6, 6, 5, 0, 3, 9, 8, 7, 8, 7, 1, 0, 8, 0, 2, 6, 7, 3, 2, 9, 6, 0, 7, 5, 1, 0, 2, 7, 3, 3, 1, 9, 1, 9, 3, 3, 3, 8, 3, 7, 0, 2, 3, 5, 2, 5, 5, 9, 5, 3, 3, 8, 5, 5, 8, 5, 1, 6, 0, 6, 1, 6, 5, 1, 0, 6, 4, 4, 6, 2, 1, 5, 4, 4
Offset: 0

Views

Author

Bruno Berselli, Mar 06 2015

Keywords

Examples

			0.0123661758680770778665039878710802673296075102733191933383702352559...
		

Crossrefs

Cf. A123092: Sum_{i >= 1} 1/(4*i^2-1)^2.
Cf. A248895: Sum_{i >= 1} 1/(4*i^2-1)^3.

Programs

  • Mathematica
    Join[{0}, RealDigits[(Pi^4 + 30 Pi^2 - 384)/768, 10, 100][[1]]]

Formula

Equals (Pi^4 + 30*Pi^2 - 384)/768.

A382782 Irregular triangle T(n,k) read by rows of the reduced coefficients of Pi^(2*k) in the expansion of Sum_{k>=1} (1 / (4*k^2-1)^n).

Original entry on oeis.org

1, -8, 1, 32, -3, -384, 30, 1, 1536, -105, -5, -30720, 1890, 105, 2, 61440, -3465, -210, -7, -10321920, 540540, 34650, 1512, 17, 4587520, -225225, -15015, -770, -17, -1486356480, 68918850, 4729725, 270270, 8415, 62, 2972712960, -130945815, -9189180, -567567, -21879, -341
Offset: 1

Views

Author

Sean A. Irvine, Apr 04 2025

Keywords

Comments

The expansion of S(n) = Sum_{k>=1} (1 / (4*k^2-1)^n) in even powers of Pi was apparently first found by Euler and the solution for n<=4 appear in many tables of sums.
These sums have a natural denominator of 2^(2*n)*(n-1)! (or, more precisely, 2^(2*n+floor((n-1)/2))*(n-1)!), but sometimes (e.g., n=7, n=9) there are additional common factors leading to the "reduced" triangle presented here.

Examples

			S(1) = (        1                                                 ) / (2),
S(2) = (       -8 +        Pi^2                                   ) / (2^4) = A123092,
S(3) = (       32 -      3*Pi^2                                   ) / (2^5 * 2!) = A248895,
S(4) = (     -384 +     30*Pi^2 +       Pi^4                      ) / (2^7 * 3!) = A248896,
S(5) = (     1536 -    105*Pi^2 -     5*Pi^4                      ) / (2^7 * 4!),
S(6) = (   -30720 +   1890*Pi^2 +   105*Pi^4 +    2*Pi^6          ) / (2^9 * 5!),
S(7) = (    61440 -   3465*Pi^2 -   210*Pi^4 -    7*Pi^6          ) / (2^10 * 5!),
S(8) = (-10321920 + 540540*Pi^2 + 34650*Pi^4 + 1512*Pi^6 + 17*Pi^8) / (2^12 * 7!),
S(9) = (  4587520 - 225225*Pi^2 - 15015*Pi^4 -  770*Pi^6 - 17*Pi^8) / (2^18 * 5 * 7), ...
		

References

  • E. P. Adams, Smithsonian Mathematical Formulae and Tables of Elliptic Functions, 1922 (eq. 6.911).

Crossrefs

Cf. A123092 (n=2), A248895 (n=3), A248896 (n=4).

A382784 Irregular triangle T(n,k) read by rows of the coefficients of Pi^(2k) in the expansion of Sum_{k>=1} (1 / (4k^2-1)^n) with denominator 2^(2n)*(n-1)!.

Original entry on oeis.org

2, -8, 1, 64, -6, -768, 60, 2, 12288, -840, -40, -245760, 15120, 840, 16, 5898240, -332640, -20160, -672, -165150720, 8648640, 554400, 24192, 272, 5284823040, -259459200, -17297280, -887040, -19584, -190253629440, 8821612800, 605404800, 34594560, 1077120, 7936, 7610145177600, -335221286400, -23524300800, -1452971520, -56010240, -872960
Offset: 1

Views

Author

Sean A. Irvine, Apr 04 2025

Keywords

Comments

See A382782 for a version of this triangle where common factors have been removed.

Examples

			Triangle begins:
S(1) =  (2) / (2^2 * 0!),
S(2) = -(8 - Pi^2) / (2^4 * 1!) = A123092,
S(3) =  (64 - 6*Pi^2) / (2^6 * 2!) = A248895,
S(4) = -(768 - 60*Pi^2 - 2*Pi^4)/ (2^8 * 3!) = A248896,
S(5) =  (12288 - 840*Pi^2 - 40*Pi^4) / (2^10 * 4!),
S(6) = -(245760 - 15120*Pi^2 - 840*Pi^4 - 16*Pi^6) / (2^12 * 5!),
S(7) =  (5898240 - 332640*Pi^2 - 20160*Pi^4 - 672*Pi^6) / (2^14 * 6!),
S(8) = -(165150720 - 8648640*Pi^2 - 554400*Pi^4 - 24192*Pi^6 - 272*Pi^8) / (2^16 * 7!),
S(9) =  (5284823040 - 259459200*Pi^2 - 17297280*Pi^4 - 887040*Pi^6 - 19584*Pi^8) / (2^18 * 8!), ...
		

Crossrefs

Cf. A123092 (n=2), A248895 (n=3), A248896 (n=4).
Cf. A382782.
Showing 1-6 of 6 results.