cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A382783 Denominators arising in the expansion of Sum_{k>=1} (1/(4k^2-1)^n) in even powers of Pi.

Original entry on oeis.org

2, 16, 64, 768, 3072, 61440, 122880, 20643840, 9175040, 2972712960, 5945425920, 2615987404800, 5231974809600, 816188070297600, 108825076039680, 2742391916199936000, 10969567664799744000, 745930601206382592000, 1491861202412765184000, 2040866124900662771712000
Offset: 1

Views

Author

Sean A. Irvine, Apr 04 2025

Keywords

Comments

See A382782 for an explanation of this sequence.

Crossrefs

Cf. A382782.

A382784 Irregular triangle T(n,k) read by rows of the coefficients of Pi^(2k) in the expansion of Sum_{k>=1} (1 / (4k^2-1)^n) with denominator 2^(2n)*(n-1)!.

Original entry on oeis.org

2, -8, 1, 64, -6, -768, 60, 2, 12288, -840, -40, -245760, 15120, 840, 16, 5898240, -332640, -20160, -672, -165150720, 8648640, 554400, 24192, 272, 5284823040, -259459200, -17297280, -887040, -19584, -190253629440, 8821612800, 605404800, 34594560, 1077120, 7936, 7610145177600, -335221286400, -23524300800, -1452971520, -56010240, -872960
Offset: 1

Views

Author

Sean A. Irvine, Apr 04 2025

Keywords

Comments

See A382782 for a version of this triangle where common factors have been removed.

Examples

			Triangle begins:
S(1) =  (2) / (2^2 * 0!),
S(2) = -(8 - Pi^2) / (2^4 * 1!) = A123092,
S(3) =  (64 - 6*Pi^2) / (2^6 * 2!) = A248895,
S(4) = -(768 - 60*Pi^2 - 2*Pi^4)/ (2^8 * 3!) = A248896,
S(5) =  (12288 - 840*Pi^2 - 40*Pi^4) / (2^10 * 4!),
S(6) = -(245760 - 15120*Pi^2 - 840*Pi^4 - 16*Pi^6) / (2^12 * 5!),
S(7) =  (5898240 - 332640*Pi^2 - 20160*Pi^4 - 672*Pi^6) / (2^14 * 6!),
S(8) = -(165150720 - 8648640*Pi^2 - 554400*Pi^4 - 24192*Pi^6 - 272*Pi^8) / (2^16 * 7!),
S(9) =  (5284823040 - 259459200*Pi^2 - 17297280*Pi^4 - 887040*Pi^6 - 19584*Pi^8) / (2^18 * 8!), ...
		

Crossrefs

Cf. A123092 (n=2), A248895 (n=3), A248896 (n=4).
Cf. A382782.

A164705 T(n,k) = binomial(2n-k,n) * 2^(k-1), T(0,0)=1; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 3, 3, 2, 10, 10, 8, 4, 35, 35, 30, 20, 8, 126, 126, 112, 84, 48, 16, 462, 462, 420, 336, 224, 112, 32, 1716, 1716, 1584, 1320, 960, 576, 256, 64, 6435, 6435, 6006, 5148, 3960, 2640, 1440, 576, 128, 24310, 24310, 22880, 20020, 16016, 11440, 7040, 3520, 1280, 256
Offset: 0

Views

Author

Geoffrey Critzer, Aug 23 2009

Keywords

Comments

T(n,k) is the number of 2n digit binary sequences in which the (n+1)th zero occurs in the (2n-k+1)th position. T(n,k)/2^(2n-1) is the probability sought in Banach's matchbox problem. Row sum is 2^(2n-1). T(n,0) = T(n,1) = A088218(n).

Examples

			T(2,1) = 3 because there are 3 length 4 binary sequences in which the third zero appears in the fourth position: {0,0,1,0}, {0,1,0,0}, {1,0,0,0}.
Triangle begins
   1;
   1,   1;
   3,   3,   2;
  10,  10,   8,  4;
  35,  35,  30, 20,  8;
 126, 126, 112, 84, 48, 16;
 ...
		

Crossrefs

Row sums give A081294.
Main diagonal gives A011782.

Programs

  • Maple
    T:= (n, k)-> ceil(binomial(2*n-k, n)*2^(k-1)):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Apr 06 2025
  • Mathematica
    Table[Table[Binomial[2 n - k, n]*2^(k - 1), {k, 0, n}], {n, 0, 9}] // Grid

Formula

Sum_{k=0..n} k * T(n,k) = A000531(n). - Alois P. Heinz, Apr 06 2025

Extensions

T(0,0)=1 prepended by Sean A. Irvine, Apr 05 2025
Showing 1-3 of 3 results.