A382783
Denominators arising in the expansion of Sum_{k>=1} (1/(4k^2-1)^n) in even powers of Pi.
Original entry on oeis.org
2, 16, 64, 768, 3072, 61440, 122880, 20643840, 9175040, 2972712960, 5945425920, 2615987404800, 5231974809600, 816188070297600, 108825076039680, 2742391916199936000, 10969567664799744000, 745930601206382592000, 1491861202412765184000, 2040866124900662771712000
Offset: 1
A382784
Irregular triangle T(n,k) read by rows of the coefficients of Pi^(2k) in the expansion of Sum_{k>=1} (1 / (4k^2-1)^n) with denominator 2^(2n)*(n-1)!.
Original entry on oeis.org
2, -8, 1, 64, -6, -768, 60, 2, 12288, -840, -40, -245760, 15120, 840, 16, 5898240, -332640, -20160, -672, -165150720, 8648640, 554400, 24192, 272, 5284823040, -259459200, -17297280, -887040, -19584, -190253629440, 8821612800, 605404800, 34594560, 1077120, 7936, 7610145177600, -335221286400, -23524300800, -1452971520, -56010240, -872960
Offset: 1
Triangle begins:
S(1) = (2) / (2^2 * 0!),
S(2) = -(8 - Pi^2) / (2^4 * 1!) = A123092,
S(3) = (64 - 6*Pi^2) / (2^6 * 2!) = A248895,
S(4) = -(768 - 60*Pi^2 - 2*Pi^4)/ (2^8 * 3!) = A248896,
S(5) = (12288 - 840*Pi^2 - 40*Pi^4) / (2^10 * 4!),
S(6) = -(245760 - 15120*Pi^2 - 840*Pi^4 - 16*Pi^6) / (2^12 * 5!),
S(7) = (5898240 - 332640*Pi^2 - 20160*Pi^4 - 672*Pi^6) / (2^14 * 6!),
S(8) = -(165150720 - 8648640*Pi^2 - 554400*Pi^4 - 24192*Pi^6 - 272*Pi^8) / (2^16 * 7!),
S(9) = (5284823040 - 259459200*Pi^2 - 17297280*Pi^4 - 887040*Pi^6 - 19584*Pi^8) / (2^18 * 8!), ...
A164705
T(n,k) = binomial(2n-k,n) * 2^(k-1), T(0,0)=1; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 1, 3, 3, 2, 10, 10, 8, 4, 35, 35, 30, 20, 8, 126, 126, 112, 84, 48, 16, 462, 462, 420, 336, 224, 112, 32, 1716, 1716, 1584, 1320, 960, 576, 256, 64, 6435, 6435, 6006, 5148, 3960, 2640, 1440, 576, 128, 24310, 24310, 22880, 20020, 16016, 11440, 7040, 3520, 1280, 256
Offset: 0
T(2,1) = 3 because there are 3 length 4 binary sequences in which the third zero appears in the fourth position: {0,0,1,0}, {0,1,0,0}, {1,0,0,0}.
Triangle begins
1;
1, 1;
3, 3, 2;
10, 10, 8, 4;
35, 35, 30, 20, 8;
126, 126, 112, 84, 48, 16;
...
-
T:= (n, k)-> ceil(binomial(2*n-k, n)*2^(k-1)):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Apr 06 2025
-
Table[Table[Binomial[2 n - k, n]*2^(k - 1), {k, 0, n}], {n, 0, 9}] // Grid
Showing 1-3 of 3 results.
Comments