cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A123092 Decimal expansion of Sum_{k>=1} 1/((2k-1)^2(2k+1)^2) = (Pi^2-8)/16.

Original entry on oeis.org

1, 1, 6, 8, 5, 0, 2, 7, 5, 0, 6, 8, 0, 8, 4, 9, 1, 3, 6, 7, 7, 1, 5, 5, 6, 8, 7, 4, 9, 2, 2, 5, 9, 4, 4, 5, 9, 5, 7, 1, 0, 6, 2, 1, 2, 9, 5, 2, 5, 4, 9, 4, 1, 4, 1, 5, 0, 8, 3, 4, 3, 3, 6, 0, 1, 3, 7, 5, 2, 8, 0, 1, 4, 0, 1, 2, 0, 0, 3, 2, 7, 6, 8, 7, 6, 1, 0, 8, 3, 7, 7, 3, 2, 4, 0, 9, 5, 1, 4, 4, 8, 9, 0, 0, 1
Offset: 0

Views

Author

Robert G. Wilson v, Sep 27 2006

Keywords

Examples

			0.116850275068084913677155687492259445957106212952549414150834336...
		

References

  • Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley and Sons, Inc., NJ, 2006, page 506.

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[1/((2k - 1)^2(2k + 1)^2), {k, Infinity}], 10, 111][[1]]
  • PARI
    (Pi^2-8)/16 \\ Charles R Greathouse IV, Sep 30 2022

Formula

Equals (A111003-1)/2. - Hugo Pfoertner, Aug 20 2024
Equals Sum_{k>=1} 1/(4*k^2-1)^2. - Sean A. Irvine, Mar 29 2025

A248895 Decimal expansion of Sum_{i >= 1} 1/(4*i^2-1)^3.

Original entry on oeis.org

0, 3, 7, 3, 6, 2, 2, 9, 3, 6, 9, 8, 9, 3, 6, 3, 1, 4, 7, 4, 2, 1, 3, 3, 2, 3, 4, 3, 8, 0, 8, 0, 5, 4, 1, 5, 5, 3, 2, 1, 7, 0, 3, 4, 0, 2, 8, 5, 5, 8, 7, 9, 3, 9, 3, 8, 6, 8, 7, 4, 2, 4, 7, 9, 8, 9, 6, 8, 5, 3, 9, 8, 9, 4, 9, 0, 9, 9, 7, 5, 4, 2, 3, 4, 2, 9, 1
Offset: 0

Views

Author

Bruno Berselli, Mar 06 2015

Keywords

Examples

			0.0373622936989363147421332343808054155321703402855879393868742479896853989...
		

Crossrefs

Cf. A123092: Sum_{i >= 1} 1/(4*i^2-1)^2.
Cf. A248896: Sum_{i >= 1} 1/(4*i^2-1)^4.

Programs

  • Mathematica
    Join[{0}, RealDigits[1/2 - 3 (Pi/8)^2, 10, 100][[1]]]

Formula

Equals 1/2 - 3*(Pi/8)^2.

A382782 Irregular triangle T(n,k) read by rows of the reduced coefficients of Pi^(2*k) in the expansion of Sum_{k>=1} (1 / (4*k^2-1)^n).

Original entry on oeis.org

1, -8, 1, 32, -3, -384, 30, 1, 1536, -105, -5, -30720, 1890, 105, 2, 61440, -3465, -210, -7, -10321920, 540540, 34650, 1512, 17, 4587520, -225225, -15015, -770, -17, -1486356480, 68918850, 4729725, 270270, 8415, 62, 2972712960, -130945815, -9189180, -567567, -21879, -341
Offset: 1

Views

Author

Sean A. Irvine, Apr 04 2025

Keywords

Comments

The expansion of S(n) = Sum_{k>=1} (1 / (4*k^2-1)^n) in even powers of Pi was apparently first found by Euler and the solution for n<=4 appear in many tables of sums.
These sums have a natural denominator of 2^(2*n)*(n-1)! (or, more precisely, 2^(2*n+floor((n-1)/2))*(n-1)!), but sometimes (e.g., n=7, n=9) there are additional common factors leading to the "reduced" triangle presented here.

Examples

			S(1) = (        1                                                 ) / (2),
S(2) = (       -8 +        Pi^2                                   ) / (2^4) = A123092,
S(3) = (       32 -      3*Pi^2                                   ) / (2^5 * 2!) = A248895,
S(4) = (     -384 +     30*Pi^2 +       Pi^4                      ) / (2^7 * 3!) = A248896,
S(5) = (     1536 -    105*Pi^2 -     5*Pi^4                      ) / (2^7 * 4!),
S(6) = (   -30720 +   1890*Pi^2 +   105*Pi^4 +    2*Pi^6          ) / (2^9 * 5!),
S(7) = (    61440 -   3465*Pi^2 -   210*Pi^4 -    7*Pi^6          ) / (2^10 * 5!),
S(8) = (-10321920 + 540540*Pi^2 + 34650*Pi^4 + 1512*Pi^6 + 17*Pi^8) / (2^12 * 7!),
S(9) = (  4587520 - 225225*Pi^2 - 15015*Pi^4 -  770*Pi^6 - 17*Pi^8) / (2^18 * 5 * 7), ...
		

References

  • E. P. Adams, Smithsonian Mathematical Formulae and Tables of Elliptic Functions, 1922 (eq. 6.911).

Crossrefs

Cf. A123092 (n=2), A248895 (n=3), A248896 (n=4).

A382784 Irregular triangle T(n,k) read by rows of the coefficients of Pi^(2k) in the expansion of Sum_{k>=1} (1 / (4k^2-1)^n) with denominator 2^(2n)*(n-1)!.

Original entry on oeis.org

2, -8, 1, 64, -6, -768, 60, 2, 12288, -840, -40, -245760, 15120, 840, 16, 5898240, -332640, -20160, -672, -165150720, 8648640, 554400, 24192, 272, 5284823040, -259459200, -17297280, -887040, -19584, -190253629440, 8821612800, 605404800, 34594560, 1077120, 7936, 7610145177600, -335221286400, -23524300800, -1452971520, -56010240, -872960
Offset: 1

Views

Author

Sean A. Irvine, Apr 04 2025

Keywords

Comments

See A382782 for a version of this triangle where common factors have been removed.

Examples

			Triangle begins:
S(1) =  (2) / (2^2 * 0!),
S(2) = -(8 - Pi^2) / (2^4 * 1!) = A123092,
S(3) =  (64 - 6*Pi^2) / (2^6 * 2!) = A248895,
S(4) = -(768 - 60*Pi^2 - 2*Pi^4)/ (2^8 * 3!) = A248896,
S(5) =  (12288 - 840*Pi^2 - 40*Pi^4) / (2^10 * 4!),
S(6) = -(245760 - 15120*Pi^2 - 840*Pi^4 - 16*Pi^6) / (2^12 * 5!),
S(7) =  (5898240 - 332640*Pi^2 - 20160*Pi^4 - 672*Pi^6) / (2^14 * 6!),
S(8) = -(165150720 - 8648640*Pi^2 - 554400*Pi^4 - 24192*Pi^6 - 272*Pi^8) / (2^16 * 7!),
S(9) =  (5284823040 - 259459200*Pi^2 - 17297280*Pi^4 - 887040*Pi^6 - 19584*Pi^8) / (2^18 * 8!), ...
		

Crossrefs

Cf. A123092 (n=2), A248895 (n=3), A248896 (n=4).
Cf. A382782.
Showing 1-4 of 4 results.