cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A171522 Denominator of 1/n^2-1/(n+2)^2.

Original entry on oeis.org

0, 9, 16, 225, 144, 1225, 576, 3969, 1600, 9801, 3600, 20449, 7056, 38025, 12544, 65025, 20736, 104329, 32400, 159201, 48400, 233289, 69696, 330625, 97344, 455625, 132496, 613089, 176400, 808201, 230400, 1046529, 295936, 1334025, 374544, 1677025, 467856
Offset: 0

Views

Author

Paul Curtz, Dec 11 2009

Keywords

Comments

This is the third column in the table of denominators of the hydrogenic spectra (the main diagonal A147560):
0, 0, 0, 0, 0, 0, 0, 0... A000004
1, 4, 9, 16, 25, 36, 49, 64... A000290
1, 36, 16, 100, 9, 196, 64, 324... A061038
1, 144, 225, 12, 441, 576, 81, 900... A061040
1, 400, 144, 784, 64,1296, 400,1936... A061042
1, 900 1225,1600,2025, 100,3025,3600... A061044
1,1764, 576, 324, 225,4356, 48,6084... A061046
1,3136,3969,4900,5929,7056,8281, 196... A061048.

Crossrefs

Cf. A105371. Bisections: A060300, A069075.

Programs

  • Maple
    A171522 := proc(n) if n = 0 then 0 else lcm(n+2,n) ; %^2 ; end if ; end:
    seq(A171522(n),n=0..70) ; # R. J. Mathar, Dec 15 2009
  • Mathematica
    a[n_] := If[EvenQ[n], (n*(n+2))^2/4, (n*(n+2))^2]; Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Jun 13 2017 *)
  • PARI
    concat(0, Vec(x*(x^8+4*x^6+16*x^5+190*x^4+64*x^3+180*x^2+16*x+9) / ((x-1)^5*-(x+1)^5) + O(x^100))) \\ Colin Barker, Nov 05 2014

Formula

a(n) = (A066830(n+1))^2.
a(n) = -((-5+3*(-1)^n)*n^2*(2+n)^2)/8. - Colin Barker, Nov 05 2014
G.f.: x*(x^8+4*x^6+16*x^5+190*x^4+64*x^3+180*x^2+16*x+9) / ((x-1)^5*-(x+1)^5). - Colin Barker, Nov 05 2014

Extensions

Edited and extended by R. J. Mathar, Dec 15 2009

A123092 Decimal expansion of Sum_{k>=1} 1/((2k-1)^2(2k+1)^2) = (Pi^2-8)/16.

Original entry on oeis.org

1, 1, 6, 8, 5, 0, 2, 7, 5, 0, 6, 8, 0, 8, 4, 9, 1, 3, 6, 7, 7, 1, 5, 5, 6, 8, 7, 4, 9, 2, 2, 5, 9, 4, 4, 5, 9, 5, 7, 1, 0, 6, 2, 1, 2, 9, 5, 2, 5, 4, 9, 4, 1, 4, 1, 5, 0, 8, 3, 4, 3, 3, 6, 0, 1, 3, 7, 5, 2, 8, 0, 1, 4, 0, 1, 2, 0, 0, 3, 2, 7, 6, 8, 7, 6, 1, 0, 8, 3, 7, 7, 3, 2, 4, 0, 9, 5, 1, 4, 4, 8, 9, 0, 0, 1
Offset: 0

Views

Author

Robert G. Wilson v, Sep 27 2006

Keywords

Examples

			0.116850275068084913677155687492259445957106212952549414150834336...
		

References

  • Erwin Kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley and Sons, Inc., NJ, 2006, page 506.

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[1/((2k - 1)^2(2k + 1)^2), {k, Infinity}], 10, 111][[1]]
  • PARI
    (Pi^2-8)/16 \\ Charles R Greathouse IV, Sep 30 2022

Formula

Equals (A111003-1)/2. - Hugo Pfoertner, Aug 20 2024
Equals Sum_{k>=1} 1/(4*k^2-1)^2. - Sean A. Irvine, Mar 29 2025

A069076 a(n) = (4*n^2 - 1)^3.

Original entry on oeis.org

27, 3375, 42875, 250047, 970299, 2924207, 7414875, 16581375, 33698267, 63521199, 112678587, 190109375, 307546875, 480048687, 726572699, 1070599167, 1540798875, 2171747375, 3004685307, 4088324799, 5479701947, 7245075375
Offset: 1

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

References

  • Konrad Knopp, Theory and application of infinite series, Dover, p. 269.

Crossrefs

Programs

  • Mathematica
    (4Range[30]^2-1)^3 (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{27,3375,42875,250047,970299,2924207,7414875},30] (* Harvey P. Dale, Jan 20 2012 *)

Formula

Sum_{n>=1} 1/a(n) = (32 - 3*Pi^3)/64.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7); a(1)=27, a(2)=3375, a(3)=42875, a(4)=250047, a(5)=970299, a(6)=2924207, a(7)=7414875. - Harvey P. Dale, Jan 20 2012
G.f: x*(x^6 - 34*x^5 - 3165*x^4 - 19852*x^3 - 19817*x^2 - 3186*x - 27)/(x-1)^7. - Harvey P. Dale, Jan 20 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^3/128 + 3*Pi/32 - 1/2. - Amiram Eldar, Feb 25 2022

A069073 a(n) = n*(4n^2 - 1)^2.

Original entry on oeis.org

0, 9, 450, 3675, 15876, 49005, 122694, 266175, 520200, 938961, 1592010, 2566179, 3967500, 5923125, 8583246, 12123015, 16744464, 22678425, 30186450, 39562731, 51136020, 65271549, 82372950, 102884175, 127291416, 156125025, 189961434, 229425075, 275190300, 327983301
Offset: 0

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, eq. (104) on page 20.
  • Konrad Knopp, Theory and application of infinite series, Dover, p. 269.

Crossrefs

Programs

  • Mathematica
    a[n_] := n*(4*n^2 - 1)^2; Array[a, 40, 0] (* Amiram Eldar, Mar 08 2022 *)

Formula

Sum_{n>=1} 1/a(n) = 3/2 -2*log(2) = 0.113705638880109...
Sum_{n>=1} (-1)^(n+1)/a(n) = G + log(2) - 3/2, where G is Catalan's constant (A006752). - Amiram Eldar, Mar 08 2022
Showing 1-4 of 4 results.