A123097 Triangle read by rows: T(n,k) = binomial(n-2, k-1) + n*binomial(n-1, k-1), 1 <= k <= n, starting with T(1, 1) = 1.
1, 3, 2, 4, 7, 3, 5, 14, 13, 4, 6, 23, 33, 21, 5, 7, 34, 66, 64, 31, 6, 8, 47, 115, 150, 110, 43, 7, 9, 62, 183, 300, 295, 174, 57, 8, 10, 79, 273, 539, 665, 525, 259, 73, 9, 11, 98, 388, 896, 1330, 1316, 868, 368, 91, 10, 12, 119, 531, 1404, 2436, 2898, 2394, 1356, 504, 111, 11
Offset: 1
Examples
First few rows of the triangle are 1; 3, 2; 4, 7, 3; 5, 14, 13, 4 6, 23, 33, 21, 5; 7, 34, 66, 64, 31, 6; ...
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Crossrefs
Cf. A052951 (row sums).
Programs
-
Magma
A123097:= func< n,k | n eq 1 select 1 else Binomial(n-2, k-1) + n*Binomial(n-1, k-1) >; [A123097(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 21 2021
-
Maple
T:=proc(n,k) if n=1 and k=1 then 1 elif n=1 then 0 else binomial(n-2,k-1)+n*binomial(n-1,k-1) fi end: for n from 1 to 12 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
-
Mathematica
T[n_, k_]= If[n==1, 1, Binomial[n-2, k-1] + n*Binomial[n-1, k-1]]; Table[T[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jul 21 2021 *)
-
PARI
T(n,k) = if ((n==1), (k==1), binomial(n-2,k-1)+n*binomial(n-1,k-1)); matrix(11, 11, n, k, T(n,k)) \\ Michel Marcus, Nov 09 2019
-
Sage
def A123097(n,k): return 1 if (n==1) else binomial(n-2, k-1) + n*binomial(n-1, k-1) flatten([[A123097(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Jul 21 2021
Formula
Sum_{k=1..n} T(n, k) = 2^(n-2)*(2*n + 1) - (1/2)*[n=1] = A052951(n-1). - G. C. Greubel, Jul 21 2021
Extensions
Edited by N. J. A. Sloane, Nov 24 2006
Comments