cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123110 Triangle T(n,k), 0 <= k <= n, read by rows given by [0,1,0,0,0,0,0,0,0,0,...] DELTA [1,0,-1,1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Philippe Deléham, Sep 28 2006

Keywords

Comments

Diagonal sums give A123108. - Philippe Deléham, Oct 08 2009

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, 1;
  0, 1, 1, 1;
  0, 1, 1, 1, 1;
  0, 1, 1, 1, 1, 1;
  0, 1, 1, 1, 1, 1, 1;
  0, 1, 1, 1, 1, 1, 1, 1;
  0, 1, 1, 1, 1, 1, 1, 1, 1;
  0, 1, 1, 1, 1, 1, 1, 1, 1, 1;
		

Crossrefs

Essentially the same sequence as A114607.
Also essentially the same as A023532. - R. J. Mathar, Jun 18 2008
After the initial a(0)=1, the characteristic function of A014132.
Cf. A010054.

Programs

Formula

Sum_{k=0..n} T(n,k)*x^k = A000007(n), A028310(n), A095121(n), A123109(n) for x=0,1,2,3 respectively.
G.f.: (1-x+y*x^2)/(1-(1+y)*x+y*x^2). - Philippe Deléham, Nov 01 2011
From Tom Copeland, Nov 10 2012: (Start)
O.g.f. for row polynomials: 1 + (t/(1-t))*(1/(1-x)-1/(1-x*t)) = 1 + t*x + (t+t^2)*x^2 + ....
E.g.f. for row polynomials: 1 + (t/(1-t))*(e^x-e^(t*x)) = 1 + t*x + (t+t^2)*x^2/2 + .... (End)
a(0) = 1; for n > 0, a(n) = 1 - A010054(n). [As a flat sequence] - Antti Karttunen, Jan 19 2025