A123177
Main diagonal of semiprime power sum array.
Original entry on oeis.org
2, 81, 20494, 1315073, 6115250626, 548619740497, 558551290190815706, 83010387915319808001, 718992177811939511654842, 110011000001100011001010001, 23225155720141324351494556519644062
Offset: 1
a(1) = 1 + 1^semiprime(1) = 1 + 1^4 = 2.
a(2) = 1 + 2^semiprime(1) + 2^semiprime(2) = 1 + 2^4 + 2^6 = 81.
a(3) = 1 + 3^semiprime(1) + 3^semiprime(2) + 3^semiprime(3) = 1 + 3^4 + 3^6 + 3^9 = 20494.
a(4) = 1 + 4^semiprime(1) + 4^semiprime(2) + 4^semiprime(3) + 4^semiprime(4) = 1 + 4^4 + 4^6 + 4^9 + 4^10 = 1315073 (which is prime).
a(5) = 1 + 5^semiprime(1) + 5^semiprime(2) + 5^semiprime(3) + 5^semiprime(4) + 5^semiprime(5) = 1 + 5^4 + 5^6 + 5^9 + 5^10 + 5^14 = 6115250626.
a(6) = 1 + 6^semiprime(1) + 6^semiprime(2) + 6^semiprime(3) + 6^semiprime(4) + 6^semiprime(5) + 6^semiprime(6) = 1 + 6^4 + 6^6 + 6^9 + 6^10 + 6^14 + 6^15 = 548619740497.
a(7) = 1 + 7^4 + 7^6 + 7^9 + 7^10 + 7^14 + 7^15 + 7^21 = 558551290190815706.
a(8) = 1 + 8^4 + 8^6 + 8^9 + 8^10 + 8^14 + 8^15 + 8^21 + 8^22 = 83010387915319808001.
a(9) = 1 + 9^4 + 9^6 + 9^9 + 9^10 + 9^14 + 9^15 + 9^21 + 9^22 + 9^25 = 718992177811939511654842.
a(10) = 1 + 10^4 + 10^6 + 10^9 + 10^10 + 10^14 + 10^15 + 10^21 + 10^22 + 10^25 + 10^26 = 110011000001100011001010001.
a(11) = 1 + 11^4 + 11^6 + 11^9 + 11^10 + 11^14 + 11^15 + 11^21 + 11^22 + 11^25 + 11^26 + 11^33 = 23225155720141324351494556519644062.
a(12) = 1 + 12^4 + 12^6 + 12^9 + 12^10 + 12^14 + 12^15 + 12^21 + 12^22 + 12^25 + 12^26 + 12^33 + 12^34 = 5332421525600135159678023844770734337.
a(13) = 1 + 13^4 + 13^6 + 13^9 + 13^10 + 13^14 + 13^15 + 13^21 + 13^22 + 13^25 + 13^26 + 13^33 + 13^34 + 13^35 = 1053371868623897220377558669169756037622.
A123650
a(n) = 1 + n^2 + n^3 + n^5.
Original entry on oeis.org
4, 45, 280, 1105, 3276, 8029, 17200, 33345, 59860, 101101, 162504, 250705, 373660, 540765, 762976, 1052929, 1425060, 1895725, 2483320, 3208401, 4093804, 5164765, 6449040, 7977025, 9781876, 11899629, 14369320, 17233105, 20536380, 24327901
Offset: 1
-
[1+n^2+n^3+n^5: n in [1..25]]; // G. C. Greubel, Oct 17 2017
-
Table[1+n^2+n^3+n^5,{n,30}] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{4,45,280,1105,3276,8029},30] (* Harvey P. Dale, Jan 18 2014 *)
-
for(n=1,25, print1(1+n^2+n^3+n^5, ", ")) \\ G. C. Greubel, Oct 17 2017
A123651
a(n) = 1 + n^2 + n^3 + n^5 + n^7 + n^11 + n^13 + n^17.
Original entry on oeis.org
8, 141485, 130914100, 17251189841, 764209065776, 16940083223773, 232729381165100, 2252358161564225, 16679754951397336, 100010100010101101, 505481836542757988, 2218718842990269265, 8650720586711446400
Offset: 1
-
[1 + n^2 + n^3 + n^5 + n^7 + n^11 + n^13 + n^17: n in [1..25]]; // G. C. Greubel, Oct 17 2017
-
Table[Total[n^Prime[Range[7]]]+1,{n,20}] (* Harvey P. Dale, Aug 22 2012 *)
-
for(n=1,25, print1(1 + n^2 + n^3 + n^5 + n^7 + n^11 + n^13 + n^17, ", ")) \\ G. C. Greubel, Oct 17 2017
A123652
a(n) = 1 + n^2 + n^3 + n^5 + n^7 + n^11 + n^13 + n^17 + n^19 + n^23 + n^29 + n^31 + n^37 + n^41.
Original entry on oeis.org
14, 2339155617965, 36923966682271786990, 4854597644377050732053585, 45547499507677574921923909526, 80266855145143309588022024772829, 44586202603279528645530450127574150
Offset: 1
-
[1 + n^2 + n^3 + n^5 + n^7 + n^11 + n^13 + n^17 + n^19 + n^23 + n^29 + n^31 + n^37 + n^41: n in [1..25]]; // G. C. Greubel, Oct 17 2017
-
Table[1+Total[n^Prime[Range[PrimePi[41]]]],{n,8}] (* Harvey P. Dale, Dec 20 2010 *)
-
for(n=1,25, print1(1 + n^2 + n^3 + n^5 + n^7 + n^11 + n^13 + n^17 + n^19 + n^23 + n^29 + n^31 + n^37 + n^41, ", ")) \\ G. C. Greubel, Oct 17 2017
Showing 1-4 of 4 results.
Comments