cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123119 Number of digits in sum of first n primes (A007504).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

Jonathan Vos Post, Sep 28 2006

Keywords

Comments

Since A007504(n) has the asymptotic expression ~ n^2 * log(n) / 2, a(n) has the asymptotic expression n^2 * log(n) / 2 = floor(log_10(10* n^2 * log(n) / 2)) = floor(log_10(5* n^2 * log(n))) = floor(log_10(5) + log_10(n^2) + log_10(log(n))) = floor(0.698970004 + 2*log_10(n) + log_10(log(n))). What is the smallest n such that a(n) = 5, 6, 7, ...?

Examples

			a(3) = 2 because 2 + 3 + 5 = 10 has 2 digits in its decimal expansion.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Floor[ Log[10, Sum[Prime@i, {i, n}]] + 1]; Array[f, 105] (* Robert G. Wilson v *)
    f[n_] := IntegerLength[Total[Prime[Range[n]]]]; Array[f, 105] (* Jan Mangaldan, Jan 04 2017 *)
    IntegerLength/@Accumulate[Prime[Range[110]]] (* Harvey P. Dale, Jan 26 2019 *)

Formula

a(n) = A055642(A007504(n)) = floor(log_10(10*A007504(n))) = A004216(A007504(n)) + 1 = A004218(A007504(n) + 1).

Extensions

More terms from Robert G. Wilson v, Oct 05 2006