A123149 Triangle T(n,k), 0<=k<=n, read by rows given by [1, 0, -1, 0, 0, 0, 0, 0, ...] DELTA [0, 1, 0, -1, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 3, 5, 5, 3, 1, 0, 1, 3, 6, 7, 6, 3, 1, 0, 1, 4, 9, 13, 13, 9, 4, 1, 0, 1, 4, 10, 16, 19, 16, 10, 4, 1, 0, 1, 5, 14, 26, 35, 35, 26, 14, 5, 1, 0, 1, 5, 15, 30, 45, 51, 45, 30, 15, 5, 1, 0, 1, 6, 20, 45, 75, 96, 96, 75, 45, 20, 6, 1, 0
Offset: 0
Examples
Triangle begins: 1; 1, 0; 1, 1, 0; 1, 1, 1, 0; 1, 2, 2, 1, 0; 1, 2, 3, 2, 1, 0; 1, 3, 5, 5, 3, 1, 0; 1, 3, 6, 7, 6, 3, 1, 0; 1, 4, 9, 13, 13, 9, 4, 1, 0;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
function T(n,k) // T = A123149 if k lt 0 or k gt n then return 0; elif k eq 0 or k eq n-1 then return 1; elif k eq n then return 0; else return T(n-2,k) +T(n-2,k-1) +T(n-2,k-2); end if; end function; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 17 2023
-
Mathematica
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0 || k==n-1, 1, If[k==n, 0, T[n-2,k] +T[n-2,k-1] +T[n-2,k-2] ]]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 17 2023 *)
-
SageMath
def T(n,k): # T = A123149 if (k<0 or k>n): return 0 elif (k==0 or k==n-1): return 1 elif (k==n): return 0 else: return T(n-2,k) +T(n-2,k-1) +T(n-2,k-2) flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 17 2023
Formula
T(n,k) = T(n-1,k-1) + T(n-1,k) if n even, T(n,k) = T(n-1,k-1) + T(n-2,k) if n odd, T(0,0) = 1, T(1,0) = 1, T(1,1) = 0, T(n,k) = 0 if k < 0 or if k > n.
T(n,k) = T(n,n-k-1).
Sum_{k=0..n} T(n,k) = A038754(n-1), for n>=1.
T(2*n,n) = A005773(n).
T(2*n+1,n) = A002426(n).
From Philippe Deléham, May 04 2012: (Start)
G.f.: (1+x-y^2*x^2)/(1-x^2-y*x^2-y^2*x^2).
T(n,k) = T(n-2,k) + T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n.
Sum_{k=0..n} T(n,k) = A182522(n). (End)
From G. C. Greubel, Jul 17 2023: (Start)
Sum_{k=0..n} (-1)^k*T(n,k) = A135528(n).
Sum_{k=0..floor(n/2)} T(n-k,k) = [n==0] + A013979(n+1). (End)
Comments