cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A169623 Generalized Pascal triangle read by rows: T(n,0) = T(0,n) = 1 for n >= 0, T(n,k) = 0 for k < 0 or k > n; otherwise T(n,k) = T(n-2,k-2) + T(n-2,k-1) + T(n-2,k) for 1 <= k <= n-1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 3, 5, 5, 3, 1, 1, 3, 6, 7, 6, 3, 1, 1, 4, 9, 13, 13, 9, 4, 1, 1, 4, 10, 16, 19, 16, 10, 4, 1, 1, 5, 14, 26, 35, 35, 26, 14, 5, 1, 1, 5, 15, 30, 45, 51, 45, 30, 15, 5, 1, 1, 6, 20, 45, 75, 96, 96, 75, 45, 20, 6, 1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Dec 03 2009

Keywords

Comments

The borders are all 1's, with zero entries outside. To get an internal entry, use the rule that D = A+B+C here:
A B C
* * * *
* * D * *
That is, add the three terms directly above you, two rows back.
This is the triangle er(n,k) defined in the Ehrenborg and Readdy link. See Proposition 2.4 and Table 1. - Michel Marcus, Sep 14 2016
If the offset is changed from 0 to 1, this is also the table U(n,k) of the coefficients [x^k] p_n(x) of the polynomials p_n(x) = (x + 1)*p_{n-1}(x) (if n even), p_n = (x^2 + x + 1)^floor(n/2) if n odd.
May be split into two triangles by taking the even-numbered and odd-numbered rows separately: the even-numbered rows give A027907.
From Peter Bala, Aug 19 2021: (Start)
Let M denote the lower unit triangular array A070909. For k = 0,1,2,..., define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/
having the k x k identity matrix I_k as the upper left block; in particular, M(0) = M. Then the present triangle equals the infinite matrix product M(0)*M(1)*M(2)*... (which is clearly well-defined). See the Example section below. The proof uses the hockey-stick identities from the Formula section. (End)

Examples

			Triangle begins:
                    1
                  1   1
                1   1   1
              1   2   2   1
            1   2   3   2   1
          1   3   5   5   3   1
        1   3   6   7   6   3   1
      1   4   9  13  13   9   4   1
    1   4  10  16  19  16  10   4   1
  ...
As a square array read by antidiagonals:
  1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 1, 1, 1, 1, ...
  1, 1, 2,  2,  3,  3,  4,  4,  5,  5,  6,  6, 7, 7, 8, 8, ...
  1, 2, 3,  5,  6,  9, 10, 14, 15, 20, 21, 27, ...
  1, 2, 5,  7, 13, 16, 26, 30, 45, ...
  1, 3, 6, 13, 19, 35, 45, 75, ...
  1, 3, 9, 16, 35, 51, 96, ...
  ...
From _Peter Bala_, Aug 19 2021: (Start)
With the arrays M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins
  /1        \/1        \/1       \ /1       \        /1         \
  |1 1      ||0 1      ||0 1      ||0 1      |       |1 1       |
  |1 0 1    ||0 1 1    ||0 0 1    ||0 0 1    |...  = |1 1 1     |
  |1 0 1 1  ||0 1 0 1  ||0 0 1 1  ||0 0 0 1  |       |1 2 2 1   |
  |1 0 1 0 1||0 1 0 1 1||0 0 1 0 1||0 0 0 1 1|       |1 2 3 2 1 |
  |...      ||...       |...      ||...      |       |...       |
(End)
		

Crossrefs

A123149 is essentially the same triangle, except for a diagonal of zeros.
Row sums are in A182522 (essentially A038754).
See A295555 for the next triangle in the series A007318, A169623 (this sequence).

Programs

  • Maple
    T:=proc(n,k) option remember;
    if n >= 0 and k = 0 then 1
    elif n >= 0 and k = n then 1
    elif (k < 0 or k > n) then 0
    else T(n-2,k-2)+T(n-2,k-1)+T(n-2,k);
    fi;
    end;
    for n from 0 to 14 do lprint([seq(T(n,k),k=0..n)]); od: # N. J. A. Sloane, Nov 23 2017
  • Mathematica
    p[x, 1] := 1;
    p[x_, n_] := p[x, n] = If[Mod[n, 2] == 0, (x + 1)*p[x, n - 1], (x^2 + x + 1)^Floor[n/2]]
    a = Table[CoefficientList[p[x, n], x], {n, 1, 12}]
    Flatten[a] (* This is for the same sequence but with offset 1 *)

Formula

From Peter Bala, Aug 19 2021: (Start)
T(2*n,k) = T(2*n-1,k-1) + T(2*n-2,k).
T(2*n,k) = T(2*n-1,k) + T(2*n-2,k-2).
T(2*n+1,k) = T(2*n,k) + T(2*n,k-1).
Hockey stick identities (relate row k entries to entries in row k-1):
T(2*n,k) = T(2*n-1,k-1) + T(2*n-3,k-1) + T(2*n-5,k-1) + ....
T(2*n+1,k) = T(2*n,k-1) + ( T(2*n-1,k-1) + T(2*n-3,k-1) + T(2*n-5,k-1) + ... ). (End)

Extensions

Keyword:tabl added, notation standardized, formula added by the Assoc. Editors of the OEIS, Feb 02 2010
Entry revised by N. J. A. Sloane, Nov 23 2017

A182522 a(0) = 1; thereafter a(2*n + 1) = 3^n, a(2*n + 2) = 2 * 3^n.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 18, 27, 54, 81, 162, 243, 486, 729, 1458, 2187, 4374, 6561, 13122, 19683, 39366, 59049, 118098, 177147, 354294, 531441, 1062882, 1594323, 3188646, 4782969, 9565938, 14348907, 28697814, 43046721, 86093442, 129140163, 258280326, 387420489
Offset: 0

Views

Author

Michael Somos, May 03 2012

Keywords

Comments

Row sums of triangle in A123149. - Philippe Deléham, May 04 2012
This is simply the classic sequence A038754 prefixed by a 1. - N. J. A. Sloane, Nov 23 2017
Binomial transform is A057960.
Range of row n of the circular Pascal array of order 6. - Shaun V. Ault, May 30 2014
a(n) is also the number of achiral color patterns in a row or cycle of length n using three or fewer colors. Two color patterns are the same if we permute the colors, so ABCAB=BACBA. For a cycle, we can rotate the colors, so ABCAB=CABAB. A row is achiral if it is the same as some color permutation of its reverse. Thus the reversal of ABCAB is BACBA, which is equivalent to ABCAB when we permute A and B. A cycle is achiral if it is the same as some rotation of some color permutation of its reverse. Thus CABAB reversed is BABAC. We can permute A and B to get ABABC and then rotate to get CABAB, so CABAB is achiral. It is interesting that the number of achiral color patterns is the same for rows and cycles. - Robert A. Russell, Mar 10 2018
Also, the number of walks of length n on the graph 0--1--2--3--4 starting at vertex 0. - Sean A. Irvine, Jun 03 2025

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 9*x^5 + 18*x^6 + 27*x^7 + 54*x^8 + ...
From _Robert A. Russell_, Mar 10 2018: (Start)
For a(4) = 6, the achiral color patterns for rows are AAAA, AABB, ABAB, ABBA, ABBC, and ABCA.  Note that for cycles AABB=ABBA and ABBC=ABCA.  The achiral patterns for cycles are AAAA, AAAB, AABB, ABAB, ABAC, and ABBC.  Note that AAAB and ABAC are not achiral rows.
For a(5) = 9, the achiral color patterns (for both rows and cycles) are AAAAA, AABAA, ABABA, ABBBA, AABCC, ABACA, ABBBC, ABCAB, and ABCBA. (End)
		

Crossrefs

Cf. A038754 (essentially the same sequence).
Also row sums of triangle in A169623.
Column 3 of A305749.
Cf. A124302 (oriented), A001998 (unoriented), A107767 (chiral), for rows, varying offsets.
Cf. A002076 (oriented), A056353 (unoriented), A320743 (chiral), for cycles.

Programs

  • Magma
    I:=[1,1,2]; [n le 3 select I[n] else 3*Self(n-2): n in [1..40]]; // Bruno Berselli, Mar 19 2013
    
  • Mathematica
    Join[{1}, RecurrenceTable[{a[1]==1, a[2]==2, a[n]==3 a[n-2]}, a, {n, 40}]] (* Bruno Berselli, Mar 19 2013 *)
    CoefficientList[Series[(1+x-x^2)/(1-3*x^2), {x,0,50}], x] (* G. C. Greubel, Apr 14 2017 *)
    Table[If[EvenQ[n], StirlingS2[(n+6)/2,3] - 4 StirlingS2[(n+4)/2,3] + 5 StirlingS2[(n+2)/2,3] - 2 StirlingS2[n/2,3], StirlingS2[(n+5)/2,3] - 3 StirlingS2[(n+3)/2,3] + 2 StirlingS2[(n+1)/2,3]], {n,0,40}] (* Robert A. Russell, Oct 21 2018 *)
    Join[{1},Table[If[EvenQ[n], 2 3^((n-2)/2), 3^((n-1)/2)],{n,40}]] (* Robert A. Russell, Oct 28 2018 *)
  • Maxima
    makelist(if n=0 then 1 else (1+mod(n-1,2))*3^floor((n-1)/2), n, 0, 40); /* Bruno Berselli, Mar 19 2013 */
    
  • PARI
    {a(n) = if( n<1, n==0, n--; (n%2 + 1) * 3^(n \ 2))}
    
  • PARI
    my(x='x+O('x^50)); Vec((1+x-x^2)/(1-3*x^2)) \\ G. C. Greubel, Apr 14 2017
    
  • SageMath
    def A182522(n): return (3 -(3-2*sqrt(3))*((n+1)%2))*3^((n-3)/2) + int(n==0)/3
    [A182522(n) for n in range(41)] # G. C. Greubel, Jul 17 2023

Formula

G.f.: (1 + x - x^2) / (1 - 3*x^2).
Expansion of 1 / (1 - x / (1 - x / (1 + x / (1 + x)))) in powers of x.
a(n+1) = A038754(n).
a(n) = Sum_{k=0..n} A123149(n,k). - Philippe Deléham, May 04 2012
a(n) = (3-(1+(-1)^n)*(3-2*sqrt(3))/2)*sqrt(3)^(n-3) for n>0, a(0)=1. - Bruno Berselli, Mar 19 2013
a(0) = 1, a(1) = 1, a(n) = a(n-1) + a(n-2) if n is odd, and a(n) = a(n-1) + a(n-2) + a(n-3) if n is even. - Jon Perry, Mar 19 2013
For odd n = 2m-1, a(2m-1) = T(m,1)+T(m,2)+T(m,3) for triangle T(m,k) of A140735; for even n = 2m, a(2m) = T(m,1)+T(m,2)+T(m,3) for triangle T(m,k) of A293181. - Robert A. Russell, Mar 10 2018
From Robert A. Russell, Oct 21 2018: (Start)
a(2m) = S2(m+3,3) - 4*S2(m+2,3) + 5*S2(m+1,3) - 2*S2(m,3).
a(2m-1) = S2(m+2,3) - 3*S2(m+1,3) + 2*S2(m,3), where S2(n,k) is the Stirling subset number A008277.
a(n) = 2*A001998(n-1) - A124302(n) = A124302(n) - 2*A107767(n-1) = A001998(n-1) - A107767(n-1).
a(n) = 2*A056353(n) - A002076(n) = A002076(n) - 2*A320743(n) = A056353(n) - A320743(n).
a(n) = A057427(n) + A052551(n-2) + A304973(n). (End)

Extensions

Edited by Bruno Berselli, Mar 19 2013
Definition simplified by N. J. A. Sloane, Nov 23 2017
Showing 1-2 of 2 results.