cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123163 Triangle T(n, k) = binomial((n-k)^2, k^2) read by rows.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 4, 0, 0, 1, 9, 1, 0, 0, 1, 16, 126, 0, 0, 0, 1, 25, 1820, 1, 0, 0, 0, 1, 36, 12650, 11440, 0, 0, 0, 0, 1, 49, 58905, 2042975, 1, 0, 0, 0, 0, 1, 64, 211876, 94143280, 2042975, 0, 0, 0, 0, 0, 1, 81, 635376, 2054455634, 7307872110, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Roger L. Bagula, Oct 02 2006

Keywords

Examples

			n\k | 0    1      2      3    4    5    6    7
----+--------------------------------------------
  0 | 1;
  1 | 1,   0;
  2 | 1,   1,     0;
  3 | 1,   4,     0,     0;
  4 | 1,   9,     1,     0,   0;
  5 | 1,  16,   126,     0,   0,   0;
  6 | 1,  25,  1820,     1,   0,   0,   0;
  7 | 1,  36, 12650, 11440,   0,   0,   0,   0;
		

Crossrefs

Programs

  • Magma
    [Binomial((n-k)^2, k^2): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 18 2023
    
  • Mathematica
    T[n_, k_]= (n^2-2*n*k+k^2)!/((k^2)!(n^2-2*n*k)!);
    Table[T[n,k], {n,0,10}, {k,0,n}]//Flatten
    Flatten[Table[Binomial[(n-m)^2,m^2],{n,0,10},{m,0,n}]] (* Harvey P. Dale, Aug 08 2012 *)
  • SageMath
    flatten([[binomial((n-k)^2, k^2) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 18 2023

Formula

T(n, k) = (n^2 - 2*n*k + k^2)!/((k^2)!(n^2 - 2*n*k)!).
From G. C. Greubel, Jul 18 2023: (Start)
T(n, 0) = T(2*n, n) = 1.
T(n, n) = A000007(n).
Sum_{k=0..n} T(n, k) = A123165(n). (End)

Extensions

Edited by N. J. A. Sloane, Oct 04 2006