A123163 Triangle T(n, k) = binomial((n-k)^2, k^2) read by rows.
1, 1, 0, 1, 1, 0, 1, 4, 0, 0, 1, 9, 1, 0, 0, 1, 16, 126, 0, 0, 0, 1, 25, 1820, 1, 0, 0, 0, 1, 36, 12650, 11440, 0, 0, 0, 0, 1, 49, 58905, 2042975, 1, 0, 0, 0, 0, 1, 64, 211876, 94143280, 2042975, 0, 0, 0, 0, 0, 1, 81, 635376, 2054455634, 7307872110, 1, 0, 0, 0, 0, 0
Offset: 0
Examples
n\k | 0 1 2 3 4 5 6 7 ----+-------------------------------------------- 0 | 1; 1 | 1, 0; 2 | 1, 1, 0; 3 | 1, 4, 0, 0; 4 | 1, 9, 1, 0, 0; 5 | 1, 16, 126, 0, 0, 0; 6 | 1, 25, 1820, 1, 0, 0, 0; 7 | 1, 36, 12650, 11440, 0, 0, 0, 0;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
[Binomial((n-k)^2, k^2): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 18 2023
-
Mathematica
T[n_, k_]= (n^2-2*n*k+k^2)!/((k^2)!(n^2-2*n*k)!); Table[T[n,k], {n,0,10}, {k,0,n}]//Flatten Flatten[Table[Binomial[(n-m)^2,m^2],{n,0,10},{m,0,n}]] (* Harvey P. Dale, Aug 08 2012 *)
-
SageMath
flatten([[binomial((n-k)^2, k^2) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 18 2023
Formula
T(n, k) = (n^2 - 2*n*k + k^2)!/((k^2)!(n^2 - 2*n*k)!).
From G. C. Greubel, Jul 18 2023: (Start)
T(n, 0) = T(2*n, n) = 1.
T(n, n) = A000007(n).
Sum_{k=0..n} T(n, k) = A123165(n). (End)
Extensions
Edited by N. J. A. Sloane, Oct 04 2006