A123166 Row sums of A123162.
1, 2, 5, 17, 65, 257, 1025, 4097, 16385, 65537, 262145, 1048577, 4194305, 16777217, 67108865, 268435457, 1073741825, 4294967297, 17179869185, 68719476737, 274877906945, 1099511627777, 4398046511105, 17592186044417, 70368744177665, 281474976710657, 1125899906842625, 4503599627370497, 18014398509481985
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5, -4).
Programs
-
Magma
[0] cat [4^(n-1) +1: n in [1..40]]; // G. C. Greubel, May 31 2022
-
Maple
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=4*a[n-1] od: seq(a[n]+sum((k), k=0..1), n=0..20); # Zerinvary Lajos, Mar 20 2008
-
Mathematica
A123162[n_, k_]= If [k==0, 1, Binomial[2*n-1, 2*k-1]]; Table[Sum[A123162[n, k], {k,0,n}], {n,0,30}] Table[4^(n-1) +1 -Boole[n==0]/4, {n,0,40}] (* G. C. Greubel, May 31 2022 *)
-
SageMath
[4^(n-1) +1 -bool(n==0)/4 for n in (0..40)] # G. C. Greubel, May 31 2022
Formula
a(n) = 1 + Sum_{k=0..n} binomial(2*n-1, 2*k-1), for n > 0. - Paul Barry, May 26 2008
a(n) = A052539(n-1), n > 0. - R. J. Mathar, Jun 18 2008
From Sergei N. Gladkovskii, Dec 20 2011: (Start)
G.f.: (1 - 3*x - x^2)/((1-x)*(1-4*x)).
E.g.f.: (exp(4*x) + 4*exp(x) - 1)/4 = (G(0) - 1)/4; G(k) = 1 + 4/(4^k-x*16^k/(x*4^k+(k+1)/G(k+1))); (continued fraction). (End)
Extensions
Edited by N. J. A. Sloane, Oct 04 2006