A123178 Define K(n) = Integral_{t=-1..1} (t^(2n)*(1-t^2)^(2n)/(1+it)^(3n+1))dt, and write K(n) = a(n)*Pi - b(n)/c(n) where a(n), b(n), c(n) are positive integers; the sequence gives a(n).
14, 968, 75920, 6288296, 537005664, 46764723632, 4128230266160, 368090979124960, 33073373083339904, 2989771785328137728, 271603565356722214784, 24774311300942501337728, 2267541753957311770329600
Offset: 1
Keywords
Examples
K(5) = -3618728790016/2145 + 537005664*Pi so a(5) = 537005664.
References
- Manuel Bronstein, Symbolic Integration I: Transcendental Functions, Springer, 2000, pages 39-46.
Links
- Bradley Klee, Table of n, a(n) for n = 1..1000
- Frits Beukers, A rational approach to Pi, Nieuw archief voor wiskunde 5/1 No. 4, December 2000, p. 378.
- Sam Blake, Integration Using Hermite Reduction, Wolfram Demonstrations Project.
Programs
-
Maple
Kn := proc(n) local a,l ; a := 0 : for l from 0 to (3*n+1)/2 do a := a+2*binomial(3*n+1,2*l)*(-1)^l* int(t^(2*n+2*l)*(1-t^2)^(2*n)/(1+t^2)^(3*n+1),t=0..1) ; od ; a := subs(Pi=x,a) ; RETURN(a) ; end: A123178 := proc(n) RETURN( coeftayl(Kn(n),x=0,1)) ; end: for n from 1 to 20 do printf("%d,",A123178(n)) ; od ; # R. J. Mathar, Oct 07 2006
-
Mathematica
f[n_] := CoefficientList[ Integrate[t^(2n)*(1 - t^2)^(2n)/(1 + I*t)^(3n + 1), {t, -1, 1}], Pi][[ -1]]; Array[f, 13] (* Robert G. Wilson v *) HermiteReduce[num_, den_, m_] := If[m > 1, Module[{cl = CoefficientList[num, t], deg, u, v, sol}, If[Length[cl] == 1, cl = PadRight[cl, 3]];deg=Length[cl]-1; u = Total[c[#] t^(2*#) & /@ Range[0, deg/2 - 1]]; v = Plus[ Total[-c[#] (m - 1)/(2 # + 1) t^(2*# + 1) & /@ Range[0, deg/2 - 1]], c[-1] t]; sol = Solve@MapThread[Equal, {cl,CoefficientList[Expand[Dot[{1 + t^2, 2 t}, {u, v}]], t]}]; HermiteReduce[Expand@ReplaceAll[u + 1/(m - 1) D[v, t], sol[[1]]],den,m-1]],num/4] HermiteReduce[t^(2*#)*(1-t^2)^(2*#)*((1 + I*t)^(3*#+1)+(1-I*t)^(3*#+1)),(1+t^2),3*#+1]&/@Range[20](* Bradley Klee, Jun 18 2018 *) RecurrenceTable[{64*(1+n)*(2+n)*(1+2*n)*(3+2*n)*(5+2*n)*(816+755*n+165*n^2)*a[n]-48*(2+n)*(3+2*n)*(5+2*n)*(4+3*n)*(2039+4103*n+2595*n^2+495*n^3)*a[n+1]+6*(5+2*n)*(4+3*n)*(5+3*n)*(893628+2406908*n+2163923*n^2+803750*n^3+106095*n^4)*a[n+2]-9*(3+n)*(4+3*n)*(5+3*n)*(7+3*n)*(8+3*n)*(226+425*n+165*n^2)*a[n+3]==0, a[0]==1/2,a[1]==14,a[2]==968},a,{n,1,5000}] (* Bradley Klee, Jun 24 2018 *)
Formula
64*(1+n)*(2+n)*(1+2*n)*(3+2*n)*(5+2*n)*(816 + 755*n + 165*n^2)*a(n) - 48*(2+n)*(3+2*n)*(5+2*n)*(4+3*n)*(2039 + 4103*n + 2595*n^2 + 495*n^3)*a(n+1) + 6*(5+2*n)*(4+3*n)*(5+3*n)*(893628 + 2406908*n + 2163923*n^2 + 803750*n^3 + 106095*n^4)*a(n+2) - 9*(3+n)*(4+3*n)*(5+3*n)*(7+3*n)*(8+3*n)*(226 + 425*n + 165*n^2)*a(n+3) = 0. - Bradley Klee, Jun 20 2018
Define F(x) the g.f. of these a(n), G(x)=1/2+F(x), and G^(n)(x)=d^n/dx^n G(x). Period G(x) satisfies a Picard-Fuchs type differential equation, 0=Sum_{m=0..9,n=0..5}M_{m,n} x^m G^(n)(x), with integer matrix:
M={{698544,-24948,0,0,0,0},
{-2344608,33884712,-224532,0,0,0},
{2305584,-34982100,787834836,-3255714,0,0},
{-3490848,65404872,-690185556,1319686128,-3031182,0},
{4487040,-85092672,973263876,-1454575542,508724631,-505197},
{0,89740800,-280713984,2717626800,-642933018,48807765},
{0,0,190699200,-235103952,1409057154,-67970205},
{0,0,0,109184640,-61373632,164264580},
{0,0,0,0,20939520,-4518080},
{0,0,0,0,0,1196544}} - Bradley Klee, Jun 24 2018
Extensions
More terms from R. J. Mathar, Oct 07 2006
Comments