cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A006139 n*a(n) = 2*(2*n-1)*a(n-1) + 4*(n-1)*a(n-2) with a(0) = 1.

Original entry on oeis.org

1, 2, 8, 32, 136, 592, 2624, 11776, 53344, 243392, 1116928, 5149696, 23835904, 110690816, 515483648, 2406449152, 11258054144, 52767312896, 247736643584, 1164829376512, 5484233814016, 25852072517632, 121997903495168
Offset: 0

Views

Author

Keywords

Comments

a(n) = number of Delannoy paths (A001850) from (0,0) to (n,n) in which every Northeast step is immediately preceded by an East step. - David Callan, Mar 14 2004
The Hankel transform (see A001906 for definition) of this sequence is A036442 : 1, 4, 32, 512, 16384, ... . - Philippe Deléham, Jul 03 2005
In general, 1/sqrt(1-4*r*x-4*r*x^2) has e.g.f. exp(2rx)BesselI(0,2r*sqrt((r+1)/r)x), a(n) = Sum_{k=0..n} C(2k,k)*C(k,n-k)*r^k, gives the central coefficient of (1+(2r)x+r(r+1)x^2) and is the (2r)-th binomial transform of 1/sqrt(1-8*C(n+1,2)x^2). - Paul Barry, Apr 28 2005
Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the H and U steps can have two colors. - N-E. Fahssi, Feb 05 2008
Self-convolution of a(n)/2^n gives Pell numbers A000129(n+1). - Vladimir Reshetnikov, Oct 10 2016
This sequence gives the integer part of an integral approximation to Pi, and also appears in Frits Beukers's "A Rational Approach to Pi" (cf. Links, Example). Despite quality M ~ 0.9058... reported by Beukers, measurements between n = 10000 and 30000 lead to a contentious quality estimate, M ~ 0.79..., at the 99% confidence level. In "Searching for Apéry-Style Miracles" Doron Zeilberger Quotes that M = 0.79119792... and also gives a closed form. The same rational approximation to Pi also follows from time integration on a quartic Hamiltonian surface, 2*H=(q^2+p^2)*(1-4*q*(q-p)). - Bradley Klee, Jul 19 2018, updated Mar 17 2019
Diagonal of rational function 1/(1 - (x + y + x*y^2)). - Gheorghe Coserea, Aug 06 2018

Examples

			G.f. = 1 + 2*x + 8*x^2 + 32*x^3 + 136*x^4 + 592*x^5 + 2624*x^6 + 11776*x^7 + ...
J_3 = Integral_{y=0..Pi/4} 4*(4*(sin(y)-cos(y))*sin(y))^3*dy = 32*Pi - (304/3), |J_3| < 1. - _Bradley Klee_, Jul 19 2018
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First column of A110446. A higher-quality Pi approximation: A123178.

Programs

  • GAP
    a:=[1,2];; for n in [3..25] do a[n]:=1/(n-1)*(2*(2*n-3)*a[n-1]+4*(n-2)*a[n-2]); od; a; # Muniru A Asiru, Aug 06 2018
  • Maple
    seq(add(binomial(2*k, k)*binomial(k, n-k), k=0..n), n=0..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 08 2001
    A006139 := n -> 2^n*hypergeom([-n/2, 1/2-n/2], [1], 2):
    seq(simplify(A006139(n)), n=0..29); # Peter Luschny, Sep 18 2014
  • Mathematica
    Table[SeriesCoefficient[1/(1-4x-4x^2)^(1/2),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 05 2012 *)
    Table[Abs[LegendreP[n, I]] 2^n, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 22 2015 *)
    Table[Sum[Binomial[2*k, k]*Binomial[k, n - k], {k,0,n}], {n,0,50}] (* G. C. Greubel, Feb 28 2017 *)
    a[n_] := If[n == 0, 1, Coefficient[(1 + 2 x + 2 x^2)^n, x^n]] (* Emanuele Munarini, Aug 04 2017 *)
    CoefficientList[Series[1/Sqrt[(-4 x^2 - 4 x + 1)], {x, 0, 24}], x] (* Robert G. Wilson v, Jul 28 2018 *)
  • Maxima
    a(n) := coeff(expand((1+2*x+2*x^2)^n),x,n);
    makelist(a(n),n,0,12); /* Emanuele Munarini, Aug 04 2017 */
    
  • PARI
    for(n=0,30,t=polcoeff((1+2*x+2*x^2)^n,n,x); print1(t","))
    
  • PARI
    for(n=0,25, print1(sum(k=0,n, binomial(2*k,k)*binomial(k,n-k)), ", ")) \\ G. C. Greubel, Feb 28 2017
    
  • PARI
    {a(n) = (-2*I)^n * pollegendre(n, I)}; /* Michael Somos, Aug 04 2018 */
    

Formula

a(n) = Sum_{k=0..n} C(2*k, k)*C(k, n-k). - Detlef Pauly (dettodet(AT)yahoo.de), Nov 08 2001
G.f.: 1/(1-4x-4x^2)^(1/2); also, a(n) is the central coefficient of (1+2x+2x^2)^n. - Paul D. Hanna, Jun 01 2003
Inverse binomial transform of central Delannoy numbers A001850. - David Callan, Mar 14 2004
E.g.f.: exp(2*x) * BesselI(0, 2*sqrt(2)*x). - Vladeta Jovovic, Mar 21 2004
a(n) = Sum_{k=0..floor(n/2)} C(n,2k) * C(2k,k) * 2^(n-k). - Paul Barry, Sep 19 2006
a(n) ~ 2^(n - 3/4) * (1 + sqrt(2))^(n + 1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Oct 05 2012, simplified Jan 31 2023
G.f.: 1/(1 - 2*x*(1+x)*Q(0)), where Q(k)= 1 + (4*k+1)*x*(1+x)/(k+1 - x*(1+x)*(2*k+2)*(4*k+3)/(2*x*(1+x)*(4*k+3)+(2*k+3)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 14 2013
a(n) = 2^n*hypergeom([-n/2, 1/2-n/2], [1], 2). - Peter Luschny, Sep 18 2014
0 = a(n)*(+16*a(n+1) + 24*a(n+2) - 8*a(n+3)) + a(n+1)*(+8*a(n+1) + 16*a(n+2) - 6*a(n+3)) + a(n+2)*(-2*a(n+2) + a(n+3)) for all n in Z. - Michael Somos, Oct 13 2016
It appears that Pi/2 = Sum_{n >= 1} (-1)^(n-1)*4^n/(n*a(n-1)*a(n)). - Peter Bala, Feb 20 2017
G.f.: G(x) = (1/(2*Pi))*Integral_{y=0..2*Pi} 1/(1-x*(4*(sin(y)-cos(y))*sin(y)))*dy, also satisfies: (2+4*x)*G(x)-(1-4*x-4*x^2)*G'(x)=0. - Bradley Klee, Jul 19 2018
a(n) = Sum_{k=0..n} (1-i)^k * (1+i)^(n-k) * binomial(n,k)^2, where i is the imaginary unit. - Seiichi Manyama, Aug 29 2025

A305997 Define K(n) = Integral_{t=-1..1} t^(2n)*(1-t^2)^(2n)/(1+it)^(3n+1)dt and write K(n) = d(n)*Pi - a(n)/c(n) where a(n), d(n), c(n) are positive integers; sequence gives a(n).

Original entry on oeis.org

44, 45616, 1669568, 9778855936, 3618728790016, 10227537305460736, 439851024281337856, 283497572919345676288, 262217569855510830645248, 1411010811095175238386712576, 51605826449550157277271425024, 14612860454957563743068313616384
Offset: 1

Views

Author

Bradley Klee, Jun 16 2018

Keywords

Crossrefs

Programs

  • Mathematica
    HermiteReduceRational[num_, den_, m_] := If[m > 1, Module[{cl = CoefficientList[num, t], deg, u, v, sol, c},If[Length[cl] == 1, cl = PadRight[cl, 3]]; deg = Length[cl] - 1; u = Total[c[#]*t^(2 #) & /@ Range[0, deg/2 - 1]]; v = Plus[Total[-c[#]*(m - 1)/(2*# + 1) t^(2*# + 1) & /@ Range[0, deg/2 - 1]], c[-1] t]; sol = Solve@ MapThread[Equal, {cl,CoefficientList[Expand[Dot[{1 + t^2, 2 t}, {u, v}]], t]}]; Plus[ ReplaceAll[v/(m - 1)/den^(m - 1), sol[[1]]] /. t -> 1, HermiteReduceRational[ Expand@ReplaceAll[u+1/(m-1)*D[v, t], sol[[1]]], den, m - 1]]],0]
    Numerator[ HermiteReduceRational[ t^(2*#)*(1-t^2)^(2*#)*((1+I*t)^(3*#+1)+(1-I*t)^(3*#+1)), (1+t^2), 3*#+1]]&/@Range[20] (* Bradley Klee, Jun 18 2018 *)
    Numerator@RecurrenceTable[{64*(1+n)*(2+n)*(1+2*n)*(3+2*n)*(5+2*n)*(816+755*n+165*n^2)*a[n]-48*(2+n)*(3+2*n)*(5+2*n)*(4+3*n)*(2039+4103*n+2595*n^2+495*n^3)*a[n+1]+6*(5+2*n)*(4+3*n)*(5+3*n)*(893628+2406908*n+2163923*n^2+803750*n^3+106095*n^4)*a[n+2]-9*(3+n)*(4+3*n)*(5+3*n)*(7+3*n)*(8+3*n)*(226+425*n+165*n^2)*a[n+3]==0, a[0]==0,a[1]==44,a[2]==45616/15},a,{n,1,5000}] (* Bradley Klee, Jun 25 2018 *)

Formula

Define G(x) = Sum_{n>0} A305997(n)/A305998(n)*x^n, and G^(n)(x) = d^n/dx^n G(x). Period G(x) satisfies a nonhomogeneous differential equation: -1097712 + 4292640*x + 3901584*x^2 - 224352*x^3 = Sum_{m=0..9, n=0..5} M_{m,n} x^m G^(n)(x), with integer matrix M as in A123178.

A305998 Let K(n) = integral(t=-1,1, t^(2n)*(1-t^2)^(2n)/(1+it)^(3n+1) dt) and write K(n) = d(n)*Pi - b(n)/a(n) where a(n), b(n), d(n) are positive integers; sequence gives a(n).

Original entry on oeis.org

1, 15, 7, 495, 2145, 69615, 33915, 245157, 2523675, 150225075, 60480225, 187751655, 26397882693, 7073942421, 221214302595, 26306570659215, 362711807574025, 315526198564395, 154309366568181825, 495353332454332275, 13575552922770178725
Offset: 1

Views

Author

Bradley Klee, Jun 16 2018

Keywords

Crossrefs

Programs

  • Mathematica
    HermiteReduceRational[num_, den_, m_] := If[m > 1, Module[{cl = CoefficientList[num, t], deg, u, v, sol},If[Length[cl] == 1, cl = PadRight[cl, 3]]; deg = Length[cl] - 1; u = Total[c[#]*t^(2 #) & /@ Range[0, deg/2 - 1]]; v = Plus[Total[-c[#]*(m - 1)/(2*# + 1) t^(2*# + 1) & /@ Range[0, deg/2 - 1]], c[-1] t]; sol = Solve@ MapThread[Equal, {cl,CoefficientList[Expand[Dot[{1 + t^2, 2 t}, {u, v}]], t]}]; Plus[ ReplaceAll[v/(m - 1)/den^(m - 1), sol[[1]]] /. t -> 1, HermiteReduceRational[ Expand@ReplaceAll[u+1/(m-1)*D[v, t], sol[[1]]], den, m - 1]]],0]
    Denominator[ HermiteReduceRational[ t^(2*#)*(1-t^2)^(2*#)*((1+I*t)^(3*#+1)+(1-I*t)^(3*#+1)), (1+t^2), 3*#+1]]&/@Range[20] (* Bradley Klee, Jun 18 2018 *)
    Denominator@RecurrenceTable[ {64*(1+n)*(2+n)*(1+2*n)*(3+2*n)*(5+2*n)*(816+755*n+165*n^2)*a[n] -48*(2+n)*(3+2*n)*(5+2*n)*(4+3*n)*(2039+4103*n+2595*n^2+495*n^3)*a[n+1] +6*(5+2*n)*(4+3*n)*(5+3*n)*(893628+2406908*n+2163923*n^2+803750*n^3+106095*n^4)*a[n+2] -9*(3+n)*(4+3*n)*(5+3*n)*(7+3*n)*(8+3*n)*(226+425*n+165*n^2)*a[n+3]==0, a[0]==0, a[1]==44, a[2]==45616/15}, a, {n,1,5000}] (* Bradley Klee, Jun 25 2018 *)

A190726 Central coefficients of Riordan matrix A118384.

Original entry on oeis.org

1, 6, 62, 720, 8806, 110916, 1423796, 18520788, 243289670, 3220011684, 42872967012, 573608356272, 7705343534716, 103857425975400, 1403902871946000, 19024773303675420, 258372666772083270, 3515644245559211172, 47918193512409831380
Offset: 0

Views

Author

Emanuele Munarini, May 17 2011

Keywords

Comments

This sequence gives the integer part of an integral approximation to log(2), thus bears strong similarity to A123178. Quality of rational approximants appears entirely sufficient to prove irrationality. - Bradley Klee, Jun 29 2018

Examples

			From _Bradley Klee_, Jul 16 2018: (Start)
I_2 = Integral_{t=0..1} ((1-t)^4*t^4)/(4*(1+t)^3)*dt = 62*log(2) - 1719/40 < 10^(-3).
I_3 = Integral_{t=0..1} - ((1-t)^6*t^6)/(8*(1+t)^4)*dt = 720*log(2) - 143731/288 < 10^(-5). (End)
		

Crossrefs

Log(2) approximation rationals: A316911, A316912.
Cf. A123178.

Programs

  • Mathematica
    Table[Sum[Binomial[2n,k]Binomial[2n,n-k]2^k,{k,0,n}],{n,0,100}]
    RecurrenceTable[{2*(n-1)*(2*n-3)*(2*n-1)*(33*n-8)*a[n-2]+ 9*(2*n-1)*(693*n^3-1554*n^2+989*n-160)*a[n-1] -3*n*(3*n-2)*(3*n-1)*(33*n-41)*a[n]==0, a[0]==1,a[1]==6},a,{n,0,10}] (* Bradley Klee, Jun 29 2018 *)
  • Maxima
    makelist(sum(binomial(2*n,k)*binomial(2*n,n-k)*2^k,k,0,n),n,0,12);
    
  • PARI
    a(n)=sum(k=0,n,binomial(2*n,k)*binomial(2*n,n-k)<Charles R Greathouse IV, Jun 29 2011

Formula

a(n) = T(2*n,n), where T(n,k) = A118384(n,k).
a(n) = Sum_{k=0..n} binomial(2*n, k)*binomial(2*n, n-k)*2^k.
a(n) = Sum_{k=0..n} binomial(2*n, k)*binomial(k, n-k)*2^(n-k)*3^(2*k-n).
From Bradley Klee, Jun 29 2018: (Start)
a(n)*log(2) - A316911(n)/A316912(n) = I_n = Integral_{t=0..1}(-1/2)^n/(1+t)*((1-t)^2*t^2/(1+t))^n*dt.
Lim_{n->oo} I_n = 0, therefore:
Lim_{n->oo} A316911(n)/A316912(n)/a(n) = log(2).
G.f. G(x) and derivatives G^(n)(x) = d^n/dx^n G(x) satisfy a Picard-Fuchs type differential equation, 0 = Sum_{m=0..5,n=0..3} M_{m,n} x^m G^(n)(x), with integer matrix: M = {{324,-54,0,0}, {-36,10842,-486,0}, {84,8352,14931,-243}, {0,756,19026,3024}, {0,0,672,5364}, {0,0,0,112}}.
2*(n-1)*(2*n-3)*(2*n-1)*(33*n-8)*a(n-2)+ 9*(2*n-1)*(693*n^3-1554*n^2+989*n-160)*a(n-1) -3*n*(3*n-2)*(3*n-1)*(33*n-41)*a(n)=0.
(End)

A316911 Define K(n) = Integral_{t=0..1} (-1/2)^n/(1+t)*((1-t)^2*t^2/(1+t))^n*dt and write K(n) = d(n)*log(2) - a(n)/c(n) where a(n), d(n), c(n) are positive integers; sequence gives a(n).

Original entry on oeis.org

0, 25, 1719, 143731, 64456699, 1846991851, 781688106621, 445837607665267, 611642484654021, 674842075634295726569, 9142845536119405749427, 38984536004906714808649, 80321414381403813427242343, 342487507476162248453574514441, 562411667990487545372378396727201
Offset: 0

Views

Author

Bradley Klee, Jul 16 2018

Keywords

Comments

As n goes to infinity, integral value K(n) goes to zero. Given a rational approximant r(n)=a(n)/c(n)/d(n)=p(n)/q(n) to irrational number log(2), the quality M(n) is defined as, M(n)=-log(|r(n)-log(2)|)/log(q(n)) (Cf. Beukers Link). For this approximation, we can easily measure M(n) over n=5,000..20,000, and estimate that M(n)~1.14... to the 99% confidence level (Cf. Histogram Link).

Examples

			{a(10),c(10),d(10)}={9142845536119405749427,307660953600,42872967012}.
r(10)=a(10)/c(10)/d(10)=9142845536119405749427/13190337914573262643200.
r(10)=0.693147180559945309417232121402...
log(2)=0.693147180559945309417232121458...
M(10)=-log(|r(10)-log(2)|)/log(13190337914573262643200)=1.27...
		

Crossrefs

Integer Part: A190726. Denominators: A316912. Similar Pi approximation: A123178, A305997, A305998.

Programs

  • Mathematica
    FracData[n0_]:=RecurrenceTable[{2*(n-1)*(2*n-3)*(2*n-1)*(33*n-8)*a[n-2]+ 9*(2*n-1)*(693*n^3-1554*n^2+989*n-160)*a[n-1] -3*n*(3*n-2)*(3*n-1)*(33*n-41)*a[n] == 0, a[0]==0, a[1]==25/6}, a, {n, 0, n0}]
    Numerator[FracData[5000]]

Formula

Define G(x) = Sum_{n>0} A316911(n)/A316912(n)*x^n, and G^(k)(x) = d^k/dx^k G(x). Period G(x) satisfies a nonhomogeneous differential equation: -225+112*x = Sum_{j=0..5,k=0..3} M_{j,k} x^j G^(k)(x), with integer matrix M as in A190726.

A316912 Define K(n) = Integral_{t=0..1} (-1/2)^n/(1+t)*((1-t)^2*t^2/(1+t))^n*dt and write K(n) = d(n)*log(2) - b(n)/a(n) where a(n), d(n), b(n) are positive integers; sequence gives a(n).

Original entry on oeis.org

1, 6, 40, 288, 10560, 24024, 792064, 34728960, 3627008, 302356454400, 307660953600, 98050867200, 15038824120320, 4757532010463232, 577952036826644480, 26189033224273920, 358597702262241361920, 244498433360619110400, 143982410756809031680
Offset: 0

Views

Author

Bradley Klee, Jul 16 2018

Keywords

Crossrefs

Integer Part: A190726. Numerators: A316911. Similar Pi Approximation: A123178, A305997, A305998.

Programs

  • Mathematica
    FracData[n0_]:=RecurrenceTable[{2*(n-1)*(2*n-3)*(2*n-1)*(33*n-8)*a[n-2]+ 9*(2*n-1)*(693*n^3-1554*n^2+989*n-160)*a[n-1] -3*n*(3*n-2)*(3*n-1)*(33*n-41)*a[n] == 0, a[0]==0, a[1]==25/6}, a, {n, 0, n0}]
    Denominator[FracData[5000]]
Showing 1-6 of 6 results.