A084607 Duplicate of A006139.
1, 2, 8, 32, 136, 592, 2624, 11776, 53344, 243392, 1116928, 5149696, 23835904
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
G.f. = 1 + 3*x + 13*x^2 + 63*x^3 + 321*x^4 + 1683*x^5 + 8989*x^6 + ...
seq(add(multinomial(n+k,n-k,k,k),k=0..n),n=0..20); # Zerinvary Lajos, Oct 18 2006 seq(orthopoly[P](n,3), n=0..100); # Robert Israel, Nov 03 2015
f[n_] := Sum[ Binomial[n, k] Binomial[n + k, k], {k, 0, n}]; Array[f, 21, 0] (* Or *) a[0] = 1; a[1] = 3; a[n_] := a[n] = (3(2 n - 1)a[n - 1] - (n - 1)a[n - 2])/n; Array[a, 21, 0] (* Or *) CoefficientList[ Series[1/Sqrt[1 - 6x + x^2], {x, 0, 20}], x] (* Robert G. Wilson v *) Table[LegendreP[n, 3], {n, 0, 22}] (* Jean-François Alcover, Jul 16 2012, from first formula *) a[n_] := Hypergeometric2F1[-n, n+1, 1, -1]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Feb 26 2013 *) a[ n_] := With[ {m = If[n < 0, -1 - n, n]}, SeriesCoefficient[ (1 - 6 x + x^2)^(-1/2), {x, 0, m}]]; (* Michael Somos, Jun 10 2015 *)
a(n):=coeff(expand((1+3*x+2*x^2)^n),x,n); makelist(a(n),n,0,12); /* Emanuele Munarini, Mar 02 2011 */
{a(n) = if( n<0, n = -1 - n); polcoeff( 1 / sqrt(1 - 6*x + x^2 + x * O(x^n)), n)}; /* Michael Somos, Sep 23 2006 */
{a(n) = if( n<0, n = -1 - n); subst( pollegendre(n), x, 3)}; /* Michael Somos, Sep 23 2006 */
{a(n) = if( n<0, n = -1 - n); n++; subst( Pol(((1 - x) / (1 - 2*x) + O(x^n))^n), x, 1);} /* Michael Somos, Sep 23 2006 */
a(n)=if(n<0, 0, polcoeff((1+3*x+2*x^2)^n, n)) \\ Paul Barry, Aug 22 2007
/* same as in A092566 but use */ steps=[[1,0], [0,1], [1,1]]; /* Joerg Arndt, Jun 30 2011 */
a(n)=sum(k=0,n,binomial(n,k)*binomial(n+k,k)); \\ Joerg Arndt, May 11 2013
my(x='x+O('x^30)); Vec(1/sqrt(1 - 6*x + x^2)) \\ Altug Alkan, Oct 17 2015
# from Nick Hobson. def f(a, b): if a == 0 or b == 0: return 1 return f(a, b - 1) + f(a - 1, b) + f(a - 1, b - 1) [f(n, n) for n in range(7)]
from gmpy2 import divexact A001850 = [1, 3] for n in range(2,10**3): A001850.append(divexact(A001850[-1]*(6*n-3)-(n-1)*A001850[-2],n)) # Chai Wah Wu, Sep 01 2014
a = lambda n: hypergeometric([-n, -n], [1], 2) [simplify(a(n)) for n in range(23)] # Peter Luschny, Nov 19 2014
0.785398163397448309615660845819875721049292349843776455243736148... N = 2, m = 6: Pi/4 = 4!*3^4 Sum_{k >= 0} (-1)^k/((2*k - 11)*(2*k - 5)*(2*k + 1)*(2*k + 7)*(2*k + 13)). - _Peter Bala_, Nov 15 2016
-- see link: Literate Programs import Data.Char (digitToInt) a003881_list len = map digitToInt $ show $ machin `div` (10 ^ 10) where machin = 4 * arccot 5 unity - arccot 239 unity unity = 10 ^ (len + 10) arccot x unity = arccot' x unity 0 (unity `div` x) 1 1 where arccot' x unity summa xpow n sign | term == 0 = summa | otherwise = arccot' x unity (summa + sign * term) (xpow `div` x ^ 2) (n + 2) (- sign) where term = xpow `div` n -- Reinhard Zumkeller, Nov 20 2012
R:= RealField(100); Pi(R)/4; // G. C. Greubel, Mar 08 2018
evalf(Pi/4) ;
RealDigits[N[Pi/4,6! ]] (* Vladimir Joseph Stephan Orlovsky, Dec 02 2009 *) (* PROGRAM STARTS *) (* Define the nested radicals a_k by recurrence *) a[k_] := Nest[Sqrt[2 + #1] & , 0, k] (* Example of Pi/4 approximation at K = 100 *) Print["The actual value of Pi/4 is"] N[Pi/4, 40] Print["At K = 100 the approximated value of Pi/4 is"] K := 100; (* the truncating integer *) N[Sum[ArcTan[Sqrt[2 - a[k - 1]]/a[k]], {k, 2, K}], 40] (* equation (8) *) (* Error terms for Pi/4 approximations *) Print["Error terms for Pi/4"] k := 1; (* initial value of the index k *) K := 10; (* initial value of the truncating integer K *) sqn := {}; (* initiate the sequence *) AppendTo[sqn, {"Truncating integer K ", " Error term in Pi/4"}]; While[K <= 30, AppendTo[sqn, {K, N[Pi/4 - Sum[ArcTan[Sqrt[2 - a[k - 1]]/a[k]], {k, 2, K}], 1000] // N}]; K++] Print[MatrixForm[sqn]] (* Sanjar Abrarov, Jan 09 2017 *)
Pi/4 \\ Charles R Greathouse IV, Jul 07 2014
# Leibniz/Cohen/Villegas/Zagier/Arndt/Haenel def FastLeibniz(n): b = 2^(2*n-1); c = b; s = 0 for k in range(n-1,-1,-1): t = 2*k+1 s = s + c/t if is_even(k) else s - c/t b *= (t*(k+1))/(2*(n-k)*(n+k)) c += b return s/c A003881 = RealField(3333)(FastLeibniz(1330)) print(A003881) # Peter Luschny, Nov 20 2012
I:=[1]; [n le 1 select I[n] else Self(n-1)*2^n: n in [1..20]]; // Vincenzo Librandi, Oct 24 2012
Table[2^((n-1) * (n+2)/2), {n, 1, 30}] (* Vincenzo Librandi, Oct 24 2012 *)
A036442[n]:=2^((n-1)*(n+2)/2)$ makelist(A036442[n],n,1,30); /* Martin Ettl, Oct 29 2012 */
a(n)=2^((n-1)*(n+2)/2) \\ Charles R Greathouse IV, Oct 24 2012
f := proc(n) option remember; if n <= 1 then 1 else (2*n-1)*f(n-1) +(n-1)^2*f(n-2); fi; end;
Range[0,20]! CoefficientList[Series[1/(1-2x-x^2)^(1/2), {x,0,20}], x] (* Geoffrey Critzer, Dec 07 2011 *)
{a(n)=local(X=x+x^2*O(x^n));(n+1)!*polcoeff(serreverse(cos(X)+sin(X)-1),n+1)} \\ Paul D. Hanna, Aug 08 2012
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/Sqrt(1-4*x^2-4*x^3) )); // G. C. Greubel, May 06 2019
A115962 := proc(n) option remember; if n < 4 then op(n+1,[1,0,2,2]); else 4*(n-1)*procname(n-2)+2*(2*n-3)*procname(n-3) ; %/n ; end if; end proc: seq(A115962(n),n=0..20) ; # R. J. Mathar, Jan 14 2020
CoefficientList[Series[1/Sqrt[1-4x^2-4x^3], {x, 0, 35}], x] (* or *) Table[Sum[Binomial[2k, k] Binomial[k, n-2k], {k, 0, Floor[n/2]}], {n, 0, 35}] (* Michael De Vlieger, Sep 03 2015 *)
x = xx+O(xx^40); Vec(1/sqrt(1-4*x^2-4*x^3)) \\ Michel Marcus, Sep 03 2015
(1/sqrt(1-4*x^2-4*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 06 2019
G.f.: 1/sqrt(1-2*b*x+(b^2-4*c)*x^2) yields central coefficients of (1+b*x+c*x^2)^n. G.f. = 1 + 2*x + 14*x^2 + 68*x^3 + 406*x^4 + 2332*x^5 + 13964*x^6 + 83848*x^7 + ...
[n le 2 select 2^(n-1) else (2*(2*n-3)*Self(n-1) + 16*(n-2)*Self(n-2))/(n-1): n in [1..30]]; // G. C. Greubel, May 30 2023
Table[n!*SeriesCoefficient[E^(2*x)*BesselI[0,2*Sqrt[5]*x],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *) Table[Abs[LegendreP[n, I/2]] 4^n, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 22 2015 *) a[n_]:= (4/I)^n LegendreP[n, I/2]; (* Michael Somos, Sep 30 2017 *)
for(n=0,30,t=polcoeff((1+2*x+5*x^2)^n,n,x); print1(t","))
a(n) = 4^n*abs(pollegendre(n, I/2)) \\ after 2nd Mathematica; Michel Marcus, Oct 22 2015
{a(n) = (4/I)^n * pollegendre(n, I/2)}; /* Michael Somos, Sep 30 2017 */
[(-4*i)^n*gen_legendre_P(n, 0, i/2) for n in range(41)] # G. C. Greubel, May 30 2023
a[n_]:=(-1)^(n+1)n(n+1)HypergeometricPFQ[{3/2,1-n,1+n/2,(3+n)/2}, {4/3,5/3,2}, 2^4/3^3]; Join[{1},Array[a,36]] (* Stefano Spezia, Jul 11 2024 *)
my(N=40, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1+x)^3))
Table[Sum[Binomial[n-3k,k]Binomial[2(n-3k),n-3k],{k,0,Floor[n/3]}],{n,0,30}] (* Harvey P. Dale, May 27 2024 *)
a(n) = sum(k=0, n\4, binomial(n-3*k, k)*binomial(2*(n-3*k), n-3*k));
my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1+x^3)))
a[n_]:=(-1)^(n+1)Pochhammer[n,3]HypergeometricPFQ[{1-n,1+n/3,(4+n)/3, (5+n)/3}, {5/4,7/4,2}, 3^3/2^6]/3; Join[{1},Array[a,30]] (* Stefano Spezia, Jul 11 2024 *)
my(N=40, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1+x)^4))
a(n)=sum(k=0, n, (-1)^(n-k) * binomial(2*k,k) * binomial(n+3*k-1,n-k)) \\ Winston de Greef, Mar 24 2023
Comments