A361790
Expansion of 1/sqrt(1 - 4*x/(1+x)^4).
Original entry on oeis.org
1, 2, -2, -8, 6, 42, -8, -228, -90, 1210, 1238, -6116, -10864, 28574, 80932, -116248, -548010, 339678, 3455686, 173208, -20452674, -14036418, 113365140, 156407916, -580805472, -1312098918, 2659610562, 9621079540, -9902139124, -64566648122, 18521111032
Offset: 0
-
a[n_]:=(-1)^(n+1)Pochhammer[n,3]HypergeometricPFQ[{1-n,1+n/3,(4+n)/3, (5+n)/3}, {5/4,7/4,2}, 3^3/2^6]/3; Join[{1},Array[a,30]] (* Stefano Spezia, Jul 11 2024 *)
-
my(N=40, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1+x)^4))
-
a(n)=sum(k=0, n, (-1)^(n-k) * binomial(2*k,k) * binomial(n+3*k-1,n-k)) \\ Winston de Greef, Mar 24 2023
A361791
Expansion of 1/sqrt(1 - 4*x/(1+x)^5).
Original entry on oeis.org
1, 2, -4, -10, 30, 72, -238, -580, 1970, 4910, -16734, -42750, 144600, 379000, -1264700, -3402480, 11160730, 30828070, -99168820, -281279030, 885931600, 2580541580, -7948885910, -23779051760, 71572652480, 219906488302, -646332447086, -2039738985238, 5850898295170
Offset: 0
-
a[n_]:=(-1)^(n+1)Pochhammer[n,4]HypergeometricPFQ[{3/2,1-n,1+n/4,(5+n)/4, (6+n)/4, (7+n)/4}, {6/5,7/5,8/5,9/5,2}, 2^10/5^5]/12; Join[{1},Array[a,28]] (* Stefano Spezia, Jul 11 2024 *)
-
my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1+x)^5))
-
a(n) = sum(k=0, n, (-1)^(n-k) * binomial(2*k,k) * binomial(n+4*k-1,n-k)) \\ Winston de Greef, Mar 24 2023
A361792
Expansion of 1/sqrt(1 - 4*x/(1+x)^6).
Original entry on oeis.org
1, 2, -6, -10, 66, 60, -750, -236, 8682, -2098, -100792, 80286, 1162458, -1603412, -13225764, 26767020, 147428498, -409582818, -1596563202, 5941802122, 16587101544, -83014131140, -161717252990, 1126247965980, 1411774064970, -14905602076350
Offset: 0
-
a[n_]:=(-1)^(n+1)Pochhammer[n,5]HypergeometricPFQ[{1-n,1+n/5,(6+n)/5, (7+n)/5, (8+n)/5, (9+n)/5}, {7/6,4/3,5/3,11/6,2}, 5^5/(2^4*3^6)]/60; Join[{1},Array[a,25]] (* Stefano Spezia, Jul 11 2024 *)
-
my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1+x)^6))
A361812
Expansion of 1/sqrt(1 - 4*x*(1+x)^3).
Original entry on oeis.org
1, 2, 12, 62, 342, 1932, 11094, 64480, 378150, 2233304, 13263772, 79136844, 473969586, 2847911596, 17159547804, 103640073972, 627280131594, 3803643145596, 23102172930156, 140522319418164, 855880464524472, 5219168576004184, 31861229045809436
Offset: 0
-
a[n_]:=Binomial[2*n, n]HypergeometricPFQ[{(1-3*n)/4, (2-3*n)/4, 3*(1-n)/4, -3*n/4}, {1/3-n, 1/2-n, 2/3-n}, -2^6/3^3]; Array[a,23,0] (* Stefano Spezia, Jul 11 2024 *)
-
my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1+x)^3))
A361813
Expansion of 1/sqrt(1 - 4*x*(1+x)^4).
Original entry on oeis.org
1, 2, 14, 80, 486, 3030, 19184, 122924, 794678, 5173160, 33863666, 222683588, 1469908848, 9733916596, 64636957300, 430240178484, 2869778018070, 19177245746844, 128361805431752, 860443079597872, 5775392952659170, 38811408514848032, 261101034656317244
Offset: 0
A361814
Expansion of 1/sqrt(1 - 4*x*(1+x)^5).
Original entry on oeis.org
1, 2, 16, 100, 660, 4482, 30886, 215364, 1515000, 10730800, 76426846, 546792056, 3926775646, 28290272420, 204375145480, 1479963148220, 10739326203132, 78072933869364, 568503202324540, 4145718464390120, 30271771382355430, 221305746414518180
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1+x)^5))
-
a(n)= sum(k=0, n, binomial(2*k,k) * binomial(5*k,n-k)) \\ Winston de Greef, Mar 25 2023
Showing 1-6 of 6 results.