cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A361812 Expansion of 1/sqrt(1 - 4*x*(1+x)^3).

Original entry on oeis.org

1, 2, 12, 62, 342, 1932, 11094, 64480, 378150, 2233304, 13263772, 79136844, 473969586, 2847911596, 17159547804, 103640073972, 627280131594, 3803643145596, 23102172930156, 140522319418164, 855880464524472, 5219168576004184, 31861229045809436
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=Binomial[2*n, n]HypergeometricPFQ[{(1-3*n)/4, (2-3*n)/4, 3*(1-n)/4, -3*n/4}, {1/3-n, 1/2-n, 2/3-n}, -2^6/3^3]; Array[a,23,0] (* Stefano Spezia, Jul 11 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1+x)^3))

Formula

a(n) = Sum_{k=0..n} binomial(2*k,k) * binomial(3*k,n-k).
n*a(n) = 2 * ( (2*n-1)*a(n-1) + 3*(2*n-2)*a(n-2) + 3*(2*n-3)*a(n-3) + (2*n-4)*a(n-4) ) for n > 3.
a(n) = binomial(2*n, n)*hypergeom([(1-3*n)/4, (2-3*n)/4, 3*(1-n)/4, -3*n/4], [1/3-n, 1/2-n, 2/3-n], -2^6/3^3). - Stefano Spezia, Jul 11 2024

A361814 Expansion of 1/sqrt(1 - 4*x*(1+x)^5).

Original entry on oeis.org

1, 2, 16, 100, 660, 4482, 30886, 215364, 1515000, 10730800, 76426846, 546792056, 3926775646, 28290272420, 204375145480, 1479963148220, 10739326203132, 78072933869364, 568503202324540, 4145718464390120, 30271771382355430, 221305746414518180
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1+x)^5))
    
  • PARI
    a(n)= sum(k=0, n, binomial(2*k,k) * binomial(5*k,n-k)) \\ Winston de Greef, Mar 25 2023

Formula

a(n) = Sum_{k=0..n} binomial(2*k,k) * binomial(5*k,n-k).
n*a(n) = 2 * ( (2*n-1)*a(n-1) + 5*(2*n-2)*a(n-2) + 10*(2*n-3)*a(n-3) + 10*(2*n-4)*a(n-4) + 5*(2*n-5)*a(n-5) + (2*n-6)*a(n-6) ) for n > 5.

A361830 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} binomial(2*j,j) * binomial(k*j,n-j).

Original entry on oeis.org

1, 1, 2, 1, 2, 6, 1, 2, 8, 20, 1, 2, 10, 32, 70, 1, 2, 12, 46, 136, 252, 1, 2, 14, 62, 226, 592, 924, 1, 2, 16, 80, 342, 1136, 2624, 3432, 1, 2, 18, 100, 486, 1932, 5810, 11776, 12870, 1, 2, 20, 122, 660, 3030, 11094, 30080, 53344, 48620
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2023

Keywords

Examples

			Square array begins:
    1,   1,    1,    1,    1,    1, ...
    2,   2,    2,    2,    2,    2, ...
    6,   8,   10,   12,   14,   16, ...
   20,  32,   46,   62,   80,  100, ...
   70, 136,  226,  342,  486,  660, ...
  252, 592, 1136, 1932, 3030, 4482, ...
		

Crossrefs

Columns k=0..5 give A000984, A006139, A137635, A361812, A361813, A361814.
Main diagonal gives A361829.

Programs

  • PARI
    T(n, k) = sum(j=0, n, binomial(2*j, j)*binomial(k*j, n-j));

Formula

G.f. of column k: 1/sqrt(1 - 4*x*(1+x)^k).
n*T(n,k) = 2 * Sum_{j=0..k} binomial(k,j)*(2*n-1-j)*T(n-1-j,k) for n > k.

A361817 Expansion of 1/sqrt(1 - 4*x*(1-x)^4).

Original entry on oeis.org

1, 2, -2, -16, -10, 118, 304, -500, -3754, -2488, 30866, 83716, -135568, -1080972, -792876, 9090484, 25788118, -39325156, -335074520, -271779024, 2820643842, 8348113120, -11788972644, -107836934448, -96107852032, 900943403012, 2778574561276, -3596374190416
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1-x)^4))

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2*k,k) * binomial(4*k,n-k).
n*a(n) = 2 * ( (2*n-1)*a(n-1) - 4*(2*n-2)*a(n-2) + 6*(2*n-3)*a(n-3) - 4*(2*n-4)*a(n-4) + (2*n-5)*a(n-5) ) for n > 4.
Showing 1-4 of 4 results.