cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A128063 Hankel transform of A115962.

Original entry on oeis.org

1, 2, 0, -8, -16, -32, -64, 0, 256, 512, 1024, 2048, 0, -8192, -16384, -32768, -65536, 0, 262144, 524288, 1048576, 2097152, 0, -8388608, -16777216, -33554432, -67108864, 0, 268435456, 536870912, 1073741824, 2147483648, 0, -8589934592, -17179869184
Offset: 0

Views

Author

Paul Barry, Feb 13 2007

Keywords

Crossrefs

Formula

a(n) = 2^n*((1/2 - 3*sqrt(5)/10)*cos(3*Pi*n/5) + sqrt(1/10 - sqrt(5)/50)*sin(3*Pi*n/5) + (3*sqrt(5)/10 + 1/2)*cos(Pi*n/5) - sqrt(sqrt(5)/50 + 1/10)*sin(Pi*n/5));
a(n) = 2^n*Sum_{k=0..floor((n+2)/2)} binomial(n-k+2,k)*(-1)^k*Fibonacci(n-2k+3);
a(n) = 2^n*A099443(n+2).
Empirical g.f.: -(2*x-1)*(4*x^2 + 2*x + 1) / (16*x^4 - 8*x^3 + 4*x^2 - 2*x + 1). - Colin Barker, Jun 28 2013

A115951 Expansion of 1/sqrt(1-4*x*y-4*x^2*y).

Original entry on oeis.org

1, 0, 2, 0, 2, 6, 0, 0, 12, 20, 0, 0, 6, 60, 70, 0, 0, 0, 60, 280, 252, 0, 0, 0, 20, 420, 1260, 924, 0, 0, 0, 0, 280, 2520, 5544, 3432, 0, 0, 0, 0, 70, 2520, 13860, 24024, 12870, 0, 0, 0, 0, 0, 1260, 18480, 72072, 102960, 48620, 0, 0, 0, 0, 0, 252, 13860, 120120, 360360, 437580, 184756
Offset: 0

Views

Author

Paul Barry, Mar 14 2006

Keywords

Comments

Row sums are A006139. Diagonal sums are A115962.
Coefficients of 2^n * P(n, x) with P the Legendre P polynomials. Reflection of triangle A008556. - Ralf Stephan, Apr 07 2016.

Examples

			Triangle begins
   1,
   0,  2,
   0,  2,  6,
   0,  0, 12,  20,
   0,  0,  6,  60,  70,
   0,  0,  0,  60, 280,  252,
   0,  0,  0,  20, 420, 1260, 924
		

Crossrefs

Cf. A006139 (row sums), A063007 (binomial transform), A115962 (diagonal sums).

Programs

  • Magma
    /* As triangle */ [[Binomial(2*k,k)*Binomial(k,n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 03 2015
    
  • Mathematica
    Table[Binomial[2k, k]Binomial[k, n-k], {n, 0, 10}, {k, 0, n}]//Flatten (* Michael De Vlieger, Sep 02 2015 *)
  • PARI
    {T(n,k) = binomial(2*k,k)*binomial(k,n-k)}; \\ G. C. Greubel, May 06 2019
    
  • Sage
    [[binomial(2*k,k)*binomial(k,n-k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 06 2019

Formula

Number triangle T(n,k) = C(2k,k)*C(k,n-k).
From Peter Bala, Sep 02 2015: (Start)
Binomial transform is A063007; equivalently, P * M = A063007, where P denotes Pascal's triangle A007318 and M denotes the present array.
P * M * P^-1 is a signed version of A063007. (End)

A377186 Expansion of 1/(1 - 4*x^2 - 4*x^3)^(3/2).

Original entry on oeis.org

1, 0, 6, 6, 30, 60, 170, 420, 1050, 2660, 6552, 16380, 40362, 99792, 245520, 603372, 1480050, 3624192, 8863712, 21647340, 52811616, 128700000, 313341756, 762206016, 1852565650, 4499346072, 10919990460, 26485897932, 64201490352, 155536089240, 376606931436
Offset: 0

Views

Author

Seiichi Manyama, Oct 19 2024

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 35); Coefficients(R!( 1/(1 - 4*x^2 - 4*x^3)^(3/2))); // Vincenzo Librandi, May 11 2025
  • Mathematica
    Table[Sum[(2*k+1)*Binomial[2*k,k]*Binomial[k,n-2*k],{k,0,Floor[n/2]}],{n,0,30}] (* Vincenzo Librandi, May 11 2025 *)
  • PARI
    a(n) = sum(k=0, n\2, (2*k+1)*binomial(2*k, k)*binomial(k, n-2*k));
    

Formula

a(0) = 1, a(1) = 0, a(2) = 6; a(n) = (4*(n+1)*a(n-2) + 2*(2*n+3)*a(n-3))/n.
a(n) = Sum_{k=0..floor(n/2)} (2*k+1) * binomial(2*k,k) * binomial(k,n-2*k).

A361726 Diagonal of rational function 1/(1 - (1 + x*y) * (x^2 + y^2)).

Original entry on oeis.org

1, 0, 2, 4, 8, 24, 56, 144, 376, 960, 2512, 6560, 17184, 45248, 119296, 315392, 835552, 2217216, 5893568, 15687552, 41810944, 111567104, 298016512, 796832256, 2132456704, 5711486976, 15309014528, 41062927360, 110213725184, 295995574272, 795391639552
Offset: 0

Views

Author

Seiichi Manyama, Mar 22 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(2*k, k)*binomial(2*k, n-2*k));

Formula

G.f.: 1/sqrt(1 - 4 * x^2 * (1+x)^2).
a(n) = Sum_{k=0..floor(n/2)} binomial(2*k,k) * binomial(2*k,n-2*k).
a(n) ~ (1 + sqrt(3))^(n + 1/2) / (2*3^(1/4)*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 22 2023
n*a(n) = 2*(2*n-2)*a(n-2) + 4*(2*n-3)*a(n-3) + 2*(2*n-4)*a(n-4) for n > 3. - Seiichi Manyama, Mar 23 2023

A377189 Expansion of 1/(1 - 4*x^2 - 4*x^3)^(5/2).

Original entry on oeis.org

1, 0, 10, 10, 70, 140, 490, 1260, 3570, 9660, 25872, 69300, 182490, 480480, 1252680, 3255252, 8412690, 21655920, 55535480, 141921780, 361577216, 918529040, 2327337740, 5882631040, 14836032770, 37339221192, 93794645700, 235186913780, 588736957920, 1471462327160
Offset: 0

Views

Author

Seiichi Manyama, Oct 19 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (-4)^k*binomial(-5/2, k)*binomial(k, n-2*k));

Formula

a(0) = 1, a(1) = 0, a(2) = 10; a(n) = (4*(n+3)*a(n-2) + 2*(2*n+9)*a(n-3))/n.
a(n) = Sum_{k=0..floor(n/2)} (-4)^k * binomial(-5/2,k) * binomial(k,n-2*k).

A377190 Expansion of 1/(1 - 4*x^2 - 4*x^3)^(7/2).

Original entry on oeis.org

1, 0, 14, 14, 126, 252, 1050, 2772, 8778, 24948, 72072, 204204, 570570, 1585584, 4351776, 11879868, 32162130, 86582496, 231703472, 616900284, 1634721088, 4312944064, 11333823228, 29673291648, 77423101938, 201367680696, 522180220044, 1350350044316, 3482928560880
Offset: 0

Views

Author

Seiichi Manyama, Oct 19 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (-4)^k*binomial(-7/2, k)*binomial(k, n-2*k));

Formula

a(0) = 1, a(1) = 0, a(2) = 14; a(n) = (4*(n+5)*a(n-2) + 2*(2*n+15)*a(n-3))/n.
a(n) = Sum_{k=0..floor(n/2)} (-4)^k * binomial(-7/2,k) * binomial(k,n-2*k).

A361488 Diagonal of rational function 1/(1 - (x^3 + y^3 + x^4*y)).

Original entry on oeis.org

1, 0, 0, 2, 2, 0, 6, 12, 6, 20, 60, 60, 90, 280, 420, 532, 1330, 2520, 3444, 6804, 14112, 21912, 37884, 77616, 133914, 223080, 432432, 793364, 1341912, 2471040, 4629196, 8076640, 14453010, 26960232, 48308832, 85794852, 157947816, 287413152, 512697900, 933072064
Offset: 0

Views

Author

Seiichi Manyama, Mar 22 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*k,k] * Binomial[k,n-3*k], {k,0,n/3}], {n,0,20}] (* Vaclav Kotesovec, Mar 23 2023 *)
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*k, k)*binomial(k, n-3*k));

Formula

G.f.: 1/sqrt(1 - 4 * x^3 * (1+x)).
a(n) = Sum_{k=0..floor(n/3)} binomial(2*k,k) * binomial(k,n-3*k).
From Vaclav Kotesovec, Mar 23 2023: (Start)
Recurrence: n*a(n) = 2*(2*n-3)*a(n-3) + 4*(n-2)*a(n-4).
a(n) ~ sqrt(c) * d^n / sqrt(Pi*n), where d = 1.835086681639635368143322042736678753... is the positive real root of the equation d^4 - 4*d - 4 = 0 and c = 0.2982650309662120181812121016104223... is the largest real root of the equation 1 - 20*c + 132*c^2 - 364*c^3 + 364*c^4 = 0. (End)
Showing 1-7 of 7 results.