cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A098453 Expansion of 1/sqrt(1 - 4*x - 12*x^2).

Original entry on oeis.org

1, 2, 12, 56, 304, 1632, 9024, 50304, 283392, 1607168, 9167872, 52537344, 302239744, 1744412672, 10096263168, 58576306176, 340566147072, 1983765676032, 11574393962496, 67631502065664, 395710949228544, 2318088492023808, 13594307705438208, 79802741538422784, 468895276304695296
Offset: 0

Views

Author

Paul Barry, Sep 08 2004

Keywords

Comments

Central coefficient of (1 + 2x + 4x^2)^n.
a(n) is the number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the H steps can have 2 colors and the U steps can have 4 colors. - N-E. Fahssi, Mar 31 2008
a(n) is the number of 2 X n matrices with terms in {1,2,3}, same number of 1's in top and bottom rows, and no constant columns. For example, a(1)=2 counts the transposes of (2,3) and (3,2). The number of such matrices with k 1's in each row is binomial(n,2k) [choose columns containing 1's] * binomial(2k,k) [place 1's in these columns] * 2^n [place 2 or 3 in the topmost available spot in each column and the other of 2,3 in the other spot if not occupied by a 1]. - David Callan, Aug 25 2009

Crossrefs

Programs

  • Maple
    seq(simplify((-2)^n*hypergeom([-n,1/2], [1], 4)),n=0..20); # Peter Luschny, Apr 26 2016
    T := proc(n, k) option remember;
    if n < 0 or k < 0 then 0
    elif n = 0 then binomial(2*k, k)
    else 2*(T(n-1, k+1) - T(n-1, k)) fi end:
    a := n -> T(n, 0): seq(a(n), n=0..20); # Peter Luschny, Aug 23 2017
  • Mathematica
    Table[SeriesCoefficient[1/Sqrt[1-4*x-12*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 15 2012 *)
  • PARI
    x='x+O('x^66); Vec(1/sqrt(1-4*x-12*x^2)) \\ Joerg Arndt, May 11 2013

Formula

G.f.: 1/sqrt((1+2*x)*(1-6*x)).
E.g.f.: exp(2*x)*BesselI(0, 4*x).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(2*(n-k), n)*3^k.
D-finite with recurrence: a(n+2) = ((4*n+6)*a(n+1) + 12*(n+1)*a(n))/(n+2); a(0)=1, a(1)=2. - Sergei N. Gladkovskii, Jul 30 2012
a(n) ~ sqrt(3)*6^n/(2*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 15 2012
G.f.: G(0), where G(k) = 1 + 2*x*(1+3*x)*(4*k+1)/( 2*k+1 - x*(1+3*x)*(2*k+1)*(4*k+3)/(x*(1+3*x)*(4*k+3) + (k+1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jun 30 2013
a(n) = (-2)^n*hypergeom([-n,1/2], [1], 4). - Peter Luschny, Apr 26 2016
a(n) = 2^n*GegenbauerC(n, -n, -1/2). - Peter Luschny, May 08 2016

A098269 a(n) = 2^n*P_n(4), 2^n times the Legendre polynomial of order n at 4.

Original entry on oeis.org

1, 8, 94, 1232, 16966, 240368, 3468844, 50712992, 748553926, 11131168688, 166498969924, 2502416381792, 37759888297756, 571681667171168, 8679980422677784, 132116085646644032, 2015249400937940806
Offset: 0

Views

Author

Paul Barry, Sep 01 2004

Keywords

Comments

Central coefficients of (1+8x+15x^2)^n. 2^n*LegendreP(n,k) yields the central coefficients of (1+2kx+(k^2-1)x^2)^n, with g.f. 1/sqrt(1-4kx+4x^2).
16th binomial transform of 2^n*LegendreP(n,-4) = (-1)^n*A098269(n). - Paul Barry, Sep 03 2004
Diagonal of rational functions 1/(1 + x + 3*y + x*z - 2*x*y*z), 1/(1 - x + y + 3*x*z - 2*x*y*z), 1/(1 - x - x*y - 3*y*z - 2*x*y*z). - Gheorghe Coserea, Jul 03 2018

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/Sqrt[1-16*x+4*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
    a[n_] := 3^n*HypergeometricPFQ[{-n, -n}, {1}, 5/3]; Flatten[Table[a[n], {n,0,16}]] (* Detlef Meya, May 21 2024 *)
  • PARI
    a(n)=pollegendre(n,4)<Charles R Greathouse IV, Oct 24 2011
    
  • PARI
    {a(n)=sum(k=0, n, binomial(n, k)^2*3^k*5^(n-k))} \\ Paul D. Hanna, Sep 29 2012

Formula

G.f.: 1/sqrt(1-16x+4x^2).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n, k)*binomial(2(n-k), n)*4^(n-2k).
E.g.f.: exp(8*x)*BesselI(0, 2*sqrt(15)*x), cf. A084770. - Vladeta Jovovic, Sep 01 2004
a(n) = Sum_{k=0..n} binomial(n,k)^2 * 3^k * 5^(n-k). - Paul D. Hanna, Sep 29 2012
D-finite with recurrence: n*a(n) = 8*(2*n-1)*a(n-1) - 4*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ sqrt(450+120*sqrt(15))*(8+2*sqrt(15))^n/(30*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 14 2012
a(n) = 3^n*hypergeom([-n, -n], [1], 5/3) = 5^n*hypergeom([-n, -n], [1], 3/5). - Detlef Meya, May 21 2024

A098443 Expansion of 1/sqrt(1-8*x-4*x^2).

Original entry on oeis.org

1, 4, 26, 184, 1366, 10424, 80996, 637424, 5064166, 40528984, 326251276, 2638751504, 21426682876, 174563719984, 1426219233416, 11681133293024, 95877105146246, 788433553532824, 6494463369141116, 53576199709855184
Offset: 0

Views

Author

Paul Barry, Sep 07 2004

Keywords

Comments

Binomial transform of A098444. Second binomial transform of A084770. Third binomial transform of A098264.

Examples

			G.f. = 1 + 4*x + 26*x^2 + 184*x^3 + 1366*x^4 + 10424*x^5 + 80996*x^6 + ...
		

Crossrefs

Column k=2 of A386621.

Programs

  • Mathematica
    CoefficientList[Series[1/Sqrt[1 - 8*x - 4*x^2], {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 15 2012, updated Mar 21 2024 *)
  • PARI
    x='x+O('x^66); Vec(1/sqrt(1-8*x-4*x^2)) \\ Joerg Arndt, May 11 2013

Formula

E.g.f.: exp(4*x) * BesselI(0, 2*sqrt(5)*x).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k) * binomial(2(n-k), n) * 2^(n-2k).
D-finite with recurrence: n*a(n) = 4*(2*n-1)*a(n-1) + 4*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 15 2012
a(n) ~ sqrt(50+20*sqrt(5))*(4+2*sqrt(5))^n/(10*sqrt(Pi*n)). Equivalently, a(n) ~ 2^(n-1/2) * phi^(3*n + 3/2) / (5^(1/4) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Oct 15 2012, updated Mar 21 2024
G.f.: 1/(1 - 2*x*(2+x)*Q(0)), where Q(k)= 1 + (4*k+1)*x*(2+x)/(k+1 - x*(2+x)*(2*k+2)*(4*k+3)/(2*x*(2+x)*(4*k+3) + (2*k+3)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
G.f.: Q(0), where Q(k) = 1 + 2*x*(x+2)*(4*k+1)/( 2*k+1 - x*(x+2)*(2*k+1)*(4*k+3)/(x*(x+2)*(4*k+3) + (k+1)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 16 2013
From Peter Bala, Mar 16 2024: (Start)
a(n) = (-2*i)^n * P(n, 2*i), where i = sqrt(-1) and P(n, x) denotes the n-th Legendre polynomial.
Sum_{n >= 1} (-1)^(n+1)*4^n/(n*a(n-1)*a(n)) = 2*arctan(1/2) = 2*A073000. (End)
From Seiichi Manyama, Aug 29 2025: (Start)
a(n) = Sum_{k=0..n} (2-i)^k * (2+i)^(n-k) * binomial(n,k)^2, where i is the imaginary unit.
a(n) = Sum_{k=0..floor(n/2)} 5^k * 4^(n-2*k) * binomial(n,2*k) * binomial(2*k,k).
a(n) = [x^n] (1+4*x+5*x^2)^n. (End)

A098444 Expansion of 1/sqrt(1-6x-11x^2).

Original entry on oeis.org

1, 3, 19, 117, 771, 5193, 35629, 247467, 1734931, 12250953, 87006249, 620818047, 4447016781, 31959556983, 230331965379, 1664043517557, 12047551338771, 87387014213433, 634918255153369, 4619923954541247, 33661450900419001
Offset: 0

Views

Author

Paul Barry, Sep 07 2004

Keywords

Comments

Binomial transform of A084770. Second binomial transform of A098264. Binomial transform is A098443.
Coefficient of x^n in (1 + 3 x + 5 x^2)^n = number of paths from the origin to (n,0) with steps U=(1,1), H=(1,0) and D=(1,-1); U can have 5 colors and H can have 3 colors. - N-E. Fahssi, Jan 28 2008

Programs

  • Mathematica
    Table[SeriesCoefficient[1/Sqrt[1-6*x-11*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 15 2012 *)
  • PARI
    x='x+O('x^66); Vec(1/sqrt(1-6*x-11*x^2)) \\ Joerg Arndt, May 11 2013

Formula

E.g.f.: exp(3x)*BesselI(0, 2*sqrt(5)*x)
D-finite with recurrence: n*a(n) = 3*(2*n-1)*a(n-1) + 11*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 15 2012
a(n) ~ sqrt(50+15*sqrt(5))*(3+2*sqrt(5))^n/(10*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 15 2012

A098455 Expansion of 1/sqrt(1-4*x-36*x^2).

Original entry on oeis.org

1, 2, 24, 128, 1096, 7632, 60864, 461568, 3648096, 28551872, 226695424, 1799989248, 14380907776, 115126211072, 924791445504, 7444100947968, 60057602459136, 485388465196032, 3929580292706304, 31858982479331328, 258641677679947776, 2102242140708298752
Offset: 0

Views

Author

Paul Barry, Sep 08 2004

Keywords

Comments

Define Q(n,x) = Sum_{k=0..floor(n/2)} binomial(n,k) * binomial(2(n-k),n) * x^(n-2k). Then a(n) = 3^n*Q(n,1/3). A084770(n) is 2^n*Q(n,1/2). Central coefficient of (1+2*x+10*x^2)^n.

Crossrefs

Cf. A387428.

Programs

  • Mathematica
    Table[SeriesCoefficient[1/Sqrt[1-4*x-36*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 15 2012 *)
  • PARI
    x='x+O('x^66); Vec(1/sqrt(1-4*x-36*x^2)) \\ Joerg Arndt, May 11 2013

Formula

E.g.f.: exp(2*x) * BesselI(0, 2*sqrt(10)*x).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(2(n-k), n)*9^k.
D-finite with recurrence: n*a(n) = 2*(2*n-1)*a(n-1) + 36*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 15 2012
a(n) ~ sqrt(50+5*sqrt(10))*(2+2*sqrt(10))^n/(10*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 15 2012
From Seiichi Manyama, Aug 30 2025: (Start)
a(n) = Sum_{k=0..n} (1-3*i)^k * (1+3*i)^(n-k) * binomial(n,k)^2, where i is the imaginary unit.
a(n) = Sum_{k=0..floor(n/2)} 10^k * 2^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). (End)

A387466 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 4*x - (2*k*x)^2).

Original entry on oeis.org

1, 1, 2, 1, 2, 6, 1, 2, 8, 20, 1, 2, 14, 32, 70, 1, 2, 24, 68, 136, 252, 1, 2, 38, 128, 406, 592, 924, 1, 2, 56, 212, 1096, 2332, 2624, 3432, 1, 2, 78, 320, 2566, 7632, 13964, 11776, 12870, 1, 2, 104, 452, 5320, 20092, 60864, 83848, 53344, 48620
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2025

Keywords

Examples

			Square array begins:
    1,    1,     1,     1,      1,      1,       1, ...
    2,    2,     2,     2,      2,      2,       2, ...
    6,    8,    14,    24,     38,     56,      78, ...
   20,   32,    68,   128,    212,    320,     452, ...
   70,  136,   406,  1096,   2566,   5320,   10006, ...
  252,  592,  2332,  7632,  20092,  44752,   88092, ...
  924, 2624, 13964, 60864, 210524, 607424, 1523724, ...
		

Crossrefs

Columns k=0..4 give A000984, A006139, A084770, A098455, A098456.
Main diagonal gives A387467.
Cf. A386621.

Programs

  • PARI
    a(n, k) = sum(j=0, n\2, (k^2+1)^j*2^(n-2*j)*binomial(n, 2*j)*binomial(2*j, j));

Formula

A(n,k) = Sum_{j=0..n} (1-k*i)^j * (1+k*i)^(n-j) * binomial(n,j)^2, where i is the imaginary unit.
A(n,k) = Sum_{j=0..floor(n/2)} k^(2*j) * binomial(2*(n-j),n-j) * binomial(n-j,j).
n*A(n,k) = 2*(2*n-1)*A(n-1,k) + 4*k^2*(n-1)*A(n-2,k) for n > 1.
A(n,k) = Sum_{j=0..floor(n/2)} (k^2+1)^j * 2^(n-2*j) * binomial(n,2*j) * binomial(2*j,j).
A(n,k) = [x^n] (1 + 2*x + (k^2+1)*x^2)^n.
E.g.f. of column k: exp(2*x) * BesselI(0, 2*sqrt(k^2+1)*x).

A098456 Expansion of 1/sqrt(1-4*x-64*x^2).

Original entry on oeis.org

1, 2, 38, 212, 2566, 20092, 210524, 1884136, 18854854, 178415852, 1764019828, 17115907096, 169100140444, 1661540282456, 16458178007288, 162887627833552, 1618680238292294, 16095872154638156, 160435286115927044, 1600771362880092472, 15997473711080724916
Offset: 0

Views

Author

Paul Barry, Sep 08 2004

Keywords

Comments

Define Q(n,x)=sum{k=0..floor(n/2), binomial(n,k)binomial(2(n-k),n)x^(n-2k)}. Then a(n)=4^n*Q(n,1/4). Central coefficients of (1+2*x+17*x^2)^n.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/Sqrt[1-4x-64x^2],{x,0,30}],x] (* Harvey P. Dale, Dec 27 2011 *)
  • PARI
    x='x+O('x^66); Vec(1/sqrt(1-4*x-64*x^2)) \\ Joerg Arndt, May 11 2013

Formula

E.g.f.: exp(2x) * BesselI(0, 2*sqrt(17)*x).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(2(n-k), n)*16^k.
D-finite with recurrence: n*a(n) +2*(1-2*n)*a(n-1) +64*(1-n)*a(n-2)=0. - R. J. Mathar, Sep 26 2012
a(n) ~ sqrt(578+34*sqrt(17))*(2+2*sqrt(17))^n/(34*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 15 2012
From Seiichi Manyama, Aug 30 2025: (Start)
a(n) = Sum_{k=0..n} (1-4*i)^k * (1+4*i)^(n-k) * binomial(n,k)^2, where i is the imaginary unit.
a(n) = Sum_{k=0..floor(n/2)} 17^k * 2^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). (End)
Showing 1-7 of 7 results.