A098453
Expansion of 1/sqrt(1 - 4*x - 12*x^2).
Original entry on oeis.org
1, 2, 12, 56, 304, 1632, 9024, 50304, 283392, 1607168, 9167872, 52537344, 302239744, 1744412672, 10096263168, 58576306176, 340566147072, 1983765676032, 11574393962496, 67631502065664, 395710949228544, 2318088492023808, 13594307705438208, 79802741538422784, 468895276304695296
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..1000 (terms 0..200 from Vincenzo Librandi)
- Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
-
seq(simplify((-2)^n*hypergeom([-n,1/2], [1], 4)),n=0..20); # Peter Luschny, Apr 26 2016
T := proc(n, k) option remember;
if n < 0 or k < 0 then 0
elif n = 0 then binomial(2*k, k)
else 2*(T(n-1, k+1) - T(n-1, k)) fi end:
a := n -> T(n, 0): seq(a(n), n=0..20); # Peter Luschny, Aug 23 2017
-
Table[SeriesCoefficient[1/Sqrt[1-4*x-12*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 15 2012 *)
-
x='x+O('x^66); Vec(1/sqrt(1-4*x-12*x^2)) \\ Joerg Arndt, May 11 2013
A098269
a(n) = 2^n*P_n(4), 2^n times the Legendre polynomial of order n at 4.
Original entry on oeis.org
1, 8, 94, 1232, 16966, 240368, 3468844, 50712992, 748553926, 11131168688, 166498969924, 2502416381792, 37759888297756, 571681667171168, 8679980422677784, 132116085646644032, 2015249400937940806
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
- Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
-
Table[SeriesCoefficient[1/Sqrt[1-16*x+4*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
a[n_] := 3^n*HypergeometricPFQ[{-n, -n}, {1}, 5/3]; Flatten[Table[a[n], {n,0,16}]] (* Detlef Meya, May 21 2024 *)
-
a(n)=pollegendre(n,4)<Charles R Greathouse IV, Oct 24 2011
-
{a(n)=sum(k=0, n, binomial(n, k)^2*3^k*5^(n-k))} \\ Paul D. Hanna, Sep 29 2012
A098443
Expansion of 1/sqrt(1-8*x-4*x^2).
Original entry on oeis.org
1, 4, 26, 184, 1366, 10424, 80996, 637424, 5064166, 40528984, 326251276, 2638751504, 21426682876, 174563719984, 1426219233416, 11681133293024, 95877105146246, 788433553532824, 6494463369141116, 53576199709855184
Offset: 0
G.f. = 1 + 4*x + 26*x^2 + 184*x^3 + 1366*x^4 + 10424*x^5 + 80996*x^6 + ...
- Seiichi Manyama, Table of n, a(n) for n = 0..1000 (terms 0..200 from Vincenzo Librandi)
- Hacène Belbachir, Abdelghani Mehdaoui, László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
-
CoefficientList[Series[1/Sqrt[1 - 8*x - 4*x^2], {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 15 2012, updated Mar 21 2024 *)
-
x='x+O('x^66); Vec(1/sqrt(1-8*x-4*x^2)) \\ Joerg Arndt, May 11 2013
A098444
Expansion of 1/sqrt(1-6x-11x^2).
Original entry on oeis.org
1, 3, 19, 117, 771, 5193, 35629, 247467, 1734931, 12250953, 87006249, 620818047, 4447016781, 31959556983, 230331965379, 1664043517557, 12047551338771, 87387014213433, 634918255153369, 4619923954541247, 33661450900419001
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Hacène Belbachir, Abdelghani Mehdaoui, László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
-
Table[SeriesCoefficient[1/Sqrt[1-6*x-11*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 15 2012 *)
-
x='x+O('x^66); Vec(1/sqrt(1-6*x-11*x^2)) \\ Joerg Arndt, May 11 2013
A098455
Expansion of 1/sqrt(1-4*x-36*x^2).
Original entry on oeis.org
1, 2, 24, 128, 1096, 7632, 60864, 461568, 3648096, 28551872, 226695424, 1799989248, 14380907776, 115126211072, 924791445504, 7444100947968, 60057602459136, 485388465196032, 3929580292706304, 31858982479331328, 258641677679947776, 2102242140708298752
Offset: 0
-
Table[SeriesCoefficient[1/Sqrt[1-4*x-36*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 15 2012 *)
-
x='x+O('x^66); Vec(1/sqrt(1-4*x-36*x^2)) \\ Joerg Arndt, May 11 2013
A387466
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 4*x - (2*k*x)^2).
Original entry on oeis.org
1, 1, 2, 1, 2, 6, 1, 2, 8, 20, 1, 2, 14, 32, 70, 1, 2, 24, 68, 136, 252, 1, 2, 38, 128, 406, 592, 924, 1, 2, 56, 212, 1096, 2332, 2624, 3432, 1, 2, 78, 320, 2566, 7632, 13964, 11776, 12870, 1, 2, 104, 452, 5320, 20092, 60864, 83848, 53344, 48620
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, 2, ...
6, 8, 14, 24, 38, 56, 78, ...
20, 32, 68, 128, 212, 320, 452, ...
70, 136, 406, 1096, 2566, 5320, 10006, ...
252, 592, 2332, 7632, 20092, 44752, 88092, ...
924, 2624, 13964, 60864, 210524, 607424, 1523724, ...
-
a(n, k) = sum(j=0, n\2, (k^2+1)^j*2^(n-2*j)*binomial(n, 2*j)*binomial(2*j, j));
A098456
Expansion of 1/sqrt(1-4*x-64*x^2).
Original entry on oeis.org
1, 2, 38, 212, 2566, 20092, 210524, 1884136, 18854854, 178415852, 1764019828, 17115907096, 169100140444, 1661540282456, 16458178007288, 162887627833552, 1618680238292294, 16095872154638156, 160435286115927044, 1600771362880092472, 15997473711080724916
Offset: 0
-
CoefficientList[Series[1/Sqrt[1-4x-64x^2],{x,0,30}],x] (* Harvey P. Dale, Dec 27 2011 *)
-
x='x+O('x^66); Vec(1/sqrt(1-4*x-64*x^2)) \\ Joerg Arndt, May 11 2013
Showing 1-7 of 7 results.
Comments