cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A084770 Coefficients of 1/(1-4x-16x^2)^(1/2); also, a(n) is the central coefficient of (1+2x+5x^2)^n.

Original entry on oeis.org

1, 2, 14, 68, 406, 2332, 13964, 83848, 509926, 3118892, 19194724, 118654648, 736365436, 4584612632, 28623792344, 179142212368, 1123532958086, 7059622447052, 44431918660724, 280059644507608, 1767597777222676
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2003

Keywords

Comments

Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), U can have 5 colors and H can have 2 colors. - N-E. Fahssi, Mar 30 2008
Self-convolution of a(n)/4^n gives Fibonacci numbers A000045(n+1). - Vladimir Reshetnikov, Oct 09 2016
Let A(x) be the g.f. and f(x) := x * A(-x/4) = x / sqrt(1 + x - x^2) = x - x^2*1/2 + x^3*7/8 - ..., then f() maps the unit interval to itself monotonically with 0 an attractive fixed point. Let b(n, t) := 1/(n/2 + (t-c_0) - 5/4*log(n + 2*(t-c_1) - 5/2*log(n + 2*(t-c_2) - 5/2*log(n + 2*t ...)))), where c_0=0, c_1=1, c_2=121/120, ..., then b(n+1, t) = f(b(n, t)). - Michael Somos, Sep 30 2017

Examples

			G.f.: 1/sqrt(1-2*b*x+(b^2-4*c)*x^2) yields central coefficients of (1+b*x+c*x^2)^n.
G.f. = 1 + 2*x + 14*x^2 + 68*x^3 + 406*x^4 + 2332*x^5 + 13964*x^6 + 83848*x^7 + ...
		

Crossrefs

Column k=2 of A387466.

Programs

  • Magma
    [n le 2 select 2^(n-1) else (2*(2*n-3)*Self(n-1) + 16*(n-2)*Self(n-2))/(n-1): n in [1..30]]; // G. C. Greubel, May 30 2023
    
  • Mathematica
    Table[n!*SeriesCoefficient[E^(2*x)*BesselI[0,2*Sqrt[5]*x],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
    Table[Abs[LegendreP[n, I/2]] 4^n, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 22 2015 *)
    a[n_]:= (4/I)^n LegendreP[n, I/2]; (* Michael Somos, Sep 30 2017 *)
  • PARI
    for(n=0,30,t=polcoeff((1+2*x+5*x^2)^n,n,x); print1(t","))
    
  • PARI
    a(n) = 4^n*abs(pollegendre(n, I/2)) \\ after 2nd Mathematica; Michel Marcus, Oct 22 2015
    
  • PARI
    {a(n) = (4/I)^n * pollegendre(n, I/2)}; /* Michael Somos, Sep 30 2017 */
    
  • SageMath
    [(-4*i)^n*gen_legendre_P(n, 0, i/2) for n in range(41)] # G. C. Greubel, May 30 2023

Formula

E.g.f.: exp(2*x) * BesselI(0, 2*sqrt(5)*x). More generally, e.g.f.: exp(b*x) * BesselI(0, 2*sqrt(c)*x) yields central coefficients of (1+b*x+c*x^2)^n. - Vladeta Jovovic, Mar 21 2004
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(2(n-k), n)*4^k. - Paul Barry, Sep 08 2004
Define Q(n, x) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(2(n-k), n)*x^(n-2k). A084770(n) is 2^n*Q(n, 1/2). - Paul Barry, Sep 08 2004
Recurrence: n*a(n) = 2*(2*n-1)*a(n-1) + 16*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ sqrt(50+10*sqrt(5))*(2+2*sqrt(5))^n/(10*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 14 2012
G.f.: G(0), where G(k)= 1 + 4*x*(1+4*x)*(4*k+1)/(4*k+2 - 4*x*(1+4*x)*(4*k+2)*(4*k+3)/(4*x*(1+4*x)*(4*k+3) + 4*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 17 2013
a(n) = 2^n * hypergeom([(1-n)/2, -n/2], [1], 5). - Vladimir Reshetnikov, Oct 10 2016
a(n) = (4/i)^(2*n+1) * a(-1-n), and 0 = a(n)*(+256*a(n+1) + 96*a(n+2) - 32*a(n+3)) + a(n+1)*(+32*a(n+1) + 16*a(n+2) - 6*a(n+3)) + a(n+2)*(-2*a(n+2) + a(n+3)) for all n in Z. - Michael Somos, Sep 30 2017
From Seiichi Manyama, Aug 30 2025: (Start)
a(n) = Sum_{k=0..n} (1-2*i)^k * (1+2*i)^(n-k) * binomial(n,k)^2, where i is the imaginary unit.
a(n) = Sum_{k=0..floor(n/2)} 5^k * 2^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). (End)

A387467 a(n) = Sum_{k=0..n} (1-n*i)^k * (1+n*i)^(n-k) * binomial(n,k)^2, where i is the imaginary unit.

Original entry on oeis.org

1, 2, 14, 128, 2566, 44752, 1523724, 39267328, 1893328966, 64541150912, 4029767542756, 170848520912896, 13100724115628956, 664175960969073152, 60396776494002647768, 3563049510869692907520, 374818464874078558810694, 25220474024437034383526912, 3012865557320147302034729844
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2025

Keywords

Crossrefs

Main diagonal of A387466.
Cf. A387430.

Programs

  • Magma
    [(&+[n^(2*k) * Binomial(2*(n-k),n-k) * Binomial(n-k,k): k in [0..Floor(n/2)]]): n in [0..40]]; // Vincenzo Librandi, Sep 01 2025
  • Mathematica
    Table[Sum[(n^2+1)^k*2^(n-2*k)*Binomial[n,2*k]*Binomial[2*k,k],{k,0,Floor[n/2]}],{n,0,30}] (* Vincenzo Librandi, Sep 01 2025 *)
  • PARI
    a(n) = sum(k=0, n\2, (n^2+1)^k*2^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k));
    

Formula

a(n) = Sum_{k=0..floor(n/2)} n^(2*k) * binomial(2*(n-k),n-k) * binomial(n-k,k).
a(n) = Sum_{k=0..floor(n/2)} (n^2+1)^k * 2^(n-2*k) * binomial(n,2*k) * binomial(2*k,k).
a(n) = [x^n] (1 + 2*x + (n^2+1)*x^2)^n.
Showing 1-2 of 2 results.