cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A387466 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 4*x - (2*k*x)^2).

Original entry on oeis.org

1, 1, 2, 1, 2, 6, 1, 2, 8, 20, 1, 2, 14, 32, 70, 1, 2, 24, 68, 136, 252, 1, 2, 38, 128, 406, 592, 924, 1, 2, 56, 212, 1096, 2332, 2624, 3432, 1, 2, 78, 320, 2566, 7632, 13964, 11776, 12870, 1, 2, 104, 452, 5320, 20092, 60864, 83848, 53344, 48620
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2025

Keywords

Examples

			Square array begins:
    1,    1,     1,     1,      1,      1,       1, ...
    2,    2,     2,     2,      2,      2,       2, ...
    6,    8,    14,    24,     38,     56,      78, ...
   20,   32,    68,   128,    212,    320,     452, ...
   70,  136,   406,  1096,   2566,   5320,   10006, ...
  252,  592,  2332,  7632,  20092,  44752,   88092, ...
  924, 2624, 13964, 60864, 210524, 607424, 1523724, ...
		

Crossrefs

Columns k=0..4 give A000984, A006139, A084770, A098455, A098456.
Main diagonal gives A387467.
Cf. A386621.

Programs

  • PARI
    a(n, k) = sum(j=0, n\2, (k^2+1)^j*2^(n-2*j)*binomial(n, 2*j)*binomial(2*j, j));

Formula

A(n,k) = Sum_{j=0..n} (1-k*i)^j * (1+k*i)^(n-j) * binomial(n,j)^2, where i is the imaginary unit.
A(n,k) = Sum_{j=0..floor(n/2)} k^(2*j) * binomial(2*(n-j),n-j) * binomial(n-j,j).
n*A(n,k) = 2*(2*n-1)*A(n-1,k) + 4*k^2*(n-1)*A(n-2,k) for n > 1.
A(n,k) = Sum_{j=0..floor(n/2)} (k^2+1)^j * 2^(n-2*j) * binomial(n,2*j) * binomial(2*j,j).
A(n,k) = [x^n] (1 + 2*x + (k^2+1)*x^2)^n.
E.g.f. of column k: exp(2*x) * BesselI(0, 2*sqrt(k^2+1)*x).
Showing 1-1 of 1 results.