cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A084770 Coefficients of 1/(1-4x-16x^2)^(1/2); also, a(n) is the central coefficient of (1+2x+5x^2)^n.

Original entry on oeis.org

1, 2, 14, 68, 406, 2332, 13964, 83848, 509926, 3118892, 19194724, 118654648, 736365436, 4584612632, 28623792344, 179142212368, 1123532958086, 7059622447052, 44431918660724, 280059644507608, 1767597777222676
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2003

Keywords

Comments

Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), U can have 5 colors and H can have 2 colors. - N-E. Fahssi, Mar 30 2008
Self-convolution of a(n)/4^n gives Fibonacci numbers A000045(n+1). - Vladimir Reshetnikov, Oct 09 2016
Let A(x) be the g.f. and f(x) := x * A(-x/4) = x / sqrt(1 + x - x^2) = x - x^2*1/2 + x^3*7/8 - ..., then f() maps the unit interval to itself monotonically with 0 an attractive fixed point. Let b(n, t) := 1/(n/2 + (t-c_0) - 5/4*log(n + 2*(t-c_1) - 5/2*log(n + 2*(t-c_2) - 5/2*log(n + 2*t ...)))), where c_0=0, c_1=1, c_2=121/120, ..., then b(n+1, t) = f(b(n, t)). - Michael Somos, Sep 30 2017

Examples

			G.f.: 1/sqrt(1-2*b*x+(b^2-4*c)*x^2) yields central coefficients of (1+b*x+c*x^2)^n.
G.f. = 1 + 2*x + 14*x^2 + 68*x^3 + 406*x^4 + 2332*x^5 + 13964*x^6 + 83848*x^7 + ...
		

Crossrefs

Column k=2 of A387466.

Programs

  • Magma
    [n le 2 select 2^(n-1) else (2*(2*n-3)*Self(n-1) + 16*(n-2)*Self(n-2))/(n-1): n in [1..30]]; // G. C. Greubel, May 30 2023
    
  • Mathematica
    Table[n!*SeriesCoefficient[E^(2*x)*BesselI[0,2*Sqrt[5]*x],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
    Table[Abs[LegendreP[n, I/2]] 4^n, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 22 2015 *)
    a[n_]:= (4/I)^n LegendreP[n, I/2]; (* Michael Somos, Sep 30 2017 *)
  • PARI
    for(n=0,30,t=polcoeff((1+2*x+5*x^2)^n,n,x); print1(t","))
    
  • PARI
    a(n) = 4^n*abs(pollegendre(n, I/2)) \\ after 2nd Mathematica; Michel Marcus, Oct 22 2015
    
  • PARI
    {a(n) = (4/I)^n * pollegendre(n, I/2)}; /* Michael Somos, Sep 30 2017 */
    
  • SageMath
    [(-4*i)^n*gen_legendre_P(n, 0, i/2) for n in range(41)] # G. C. Greubel, May 30 2023

Formula

E.g.f.: exp(2*x) * BesselI(0, 2*sqrt(5)*x). More generally, e.g.f.: exp(b*x) * BesselI(0, 2*sqrt(c)*x) yields central coefficients of (1+b*x+c*x^2)^n. - Vladeta Jovovic, Mar 21 2004
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(2(n-k), n)*4^k. - Paul Barry, Sep 08 2004
Define Q(n, x) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(2(n-k), n)*x^(n-2k). A084770(n) is 2^n*Q(n, 1/2). - Paul Barry, Sep 08 2004
Recurrence: n*a(n) = 2*(2*n-1)*a(n-1) + 16*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ sqrt(50+10*sqrt(5))*(2+2*sqrt(5))^n/(10*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 14 2012
G.f.: G(0), where G(k)= 1 + 4*x*(1+4*x)*(4*k+1)/(4*k+2 - 4*x*(1+4*x)*(4*k+2)*(4*k+3)/(4*x*(1+4*x)*(4*k+3) + 4*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 17 2013
a(n) = 2^n * hypergeom([(1-n)/2, -n/2], [1], 5). - Vladimir Reshetnikov, Oct 10 2016
a(n) = (4/i)^(2*n+1) * a(-1-n), and 0 = a(n)*(+256*a(n+1) + 96*a(n+2) - 32*a(n+3)) + a(n+1)*(+32*a(n+1) + 16*a(n+2) - 6*a(n+3)) + a(n+2)*(-2*a(n+2) + a(n+3)) for all n in Z. - Michael Somos, Sep 30 2017
From Seiichi Manyama, Aug 30 2025: (Start)
a(n) = Sum_{k=0..n} (1-2*i)^k * (1+2*i)^(n-k) * binomial(n,k)^2, where i is the imaginary unit.
a(n) = Sum_{k=0..floor(n/2)} 5^k * 2^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). (End)

A387466 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 4*x - (2*k*x)^2).

Original entry on oeis.org

1, 1, 2, 1, 2, 6, 1, 2, 8, 20, 1, 2, 14, 32, 70, 1, 2, 24, 68, 136, 252, 1, 2, 38, 128, 406, 592, 924, 1, 2, 56, 212, 1096, 2332, 2624, 3432, 1, 2, 78, 320, 2566, 7632, 13964, 11776, 12870, 1, 2, 104, 452, 5320, 20092, 60864, 83848, 53344, 48620
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2025

Keywords

Examples

			Square array begins:
    1,    1,     1,     1,      1,      1,       1, ...
    2,    2,     2,     2,      2,      2,       2, ...
    6,    8,    14,    24,     38,     56,      78, ...
   20,   32,    68,   128,    212,    320,     452, ...
   70,  136,   406,  1096,   2566,   5320,   10006, ...
  252,  592,  2332,  7632,  20092,  44752,   88092, ...
  924, 2624, 13964, 60864, 210524, 607424, 1523724, ...
		

Crossrefs

Columns k=0..4 give A000984, A006139, A084770, A098455, A098456.
Main diagonal gives A387467.
Cf. A386621.

Programs

  • PARI
    a(n, k) = sum(j=0, n\2, (k^2+1)^j*2^(n-2*j)*binomial(n, 2*j)*binomial(2*j, j));

Formula

A(n,k) = Sum_{j=0..n} (1-k*i)^j * (1+k*i)^(n-j) * binomial(n,j)^2, where i is the imaginary unit.
A(n,k) = Sum_{j=0..floor(n/2)} k^(2*j) * binomial(2*(n-j),n-j) * binomial(n-j,j).
n*A(n,k) = 2*(2*n-1)*A(n-1,k) + 4*k^2*(n-1)*A(n-2,k) for n > 1.
A(n,k) = Sum_{j=0..floor(n/2)} (k^2+1)^j * 2^(n-2*j) * binomial(n,2*j) * binomial(2*j,j).
A(n,k) = [x^n] (1 + 2*x + (k^2+1)*x^2)^n.
E.g.f. of column k: exp(2*x) * BesselI(0, 2*sqrt(k^2+1)*x).

A098456 Expansion of 1/sqrt(1-4*x-64*x^2).

Original entry on oeis.org

1, 2, 38, 212, 2566, 20092, 210524, 1884136, 18854854, 178415852, 1764019828, 17115907096, 169100140444, 1661540282456, 16458178007288, 162887627833552, 1618680238292294, 16095872154638156, 160435286115927044, 1600771362880092472, 15997473711080724916
Offset: 0

Views

Author

Paul Barry, Sep 08 2004

Keywords

Comments

Define Q(n,x)=sum{k=0..floor(n/2), binomial(n,k)binomial(2(n-k),n)x^(n-2k)}. Then a(n)=4^n*Q(n,1/4). Central coefficients of (1+2*x+17*x^2)^n.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/Sqrt[1-4x-64x^2],{x,0,30}],x] (* Harvey P. Dale, Dec 27 2011 *)
  • PARI
    x='x+O('x^66); Vec(1/sqrt(1-4*x-64*x^2)) \\ Joerg Arndt, May 11 2013

Formula

E.g.f.: exp(2x) * BesselI(0, 2*sqrt(17)*x).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(2(n-k), n)*16^k.
D-finite with recurrence: n*a(n) +2*(1-2*n)*a(n-1) +64*(1-n)*a(n-2)=0. - R. J. Mathar, Sep 26 2012
a(n) ~ sqrt(578+34*sqrt(17))*(2+2*sqrt(17))^n/(34*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 15 2012
From Seiichi Manyama, Aug 30 2025: (Start)
a(n) = Sum_{k=0..n} (1-4*i)^k * (1+4*i)^(n-k) * binomial(n,k)^2, where i is the imaginary unit.
a(n) = Sum_{k=0..floor(n/2)} 17^k * 2^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). (End)
Showing 1-3 of 3 results.