cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A098461 Expansion of E.g.f.: 1/sqrt(1-2*x-3*x^2).

Original entry on oeis.org

1, 1, 6, 42, 456, 6120, 101520, 1980720, 44634240, 1139080320, 32488646400, 1023985670400, 35345049062400, 1325988036172800, 53721616851302400, 2337607853957376000, 108727934847307776000, 5383304681800421376000, 282682783375630589952000
Offset: 0

Views

Author

Paul Barry, Sep 08 2004

Keywords

Crossrefs

Main diagonal of A094796.

Programs

  • Mathematica
    Table[(n!/2^n) Sum[Binomial[n, k] Binomial[2 (n - k), n] 3^k, {k, 0, Floor[n/2]}], {n, 0, 17}] (* Michael De Vlieger, Sep 14 2016 *)

Formula

a(n) = (n!/2^n)*A098453(n);
a(n) = (n!/2^n)*Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(2*(n-k), n)*3^k.
D-finite with recurrence: a(n) +(1-2n)*a(n-1) -3(n-1)^2*a(n-2)=0. - R. J. Mathar, Dec 11 2011
a(n) = n! * A002426(n). - Anton Zakharov, Sep 14 2016

A307695 Expansion of 1/(sqrt(1-4*x)*sqrt(1-16*x)).

Original entry on oeis.org

1, 10, 118, 1540, 21286, 304300, 4443580, 65830600, 985483270, 14869654300, 225759595348, 3444812388280, 52781007848284, 811510465220920, 12513859077134008, 193460383702061200, 2997463389599395270, 46532910920993515900, 723626591914643806180, 11270311875128088314200
Offset: 0

Views

Author

Seiichi Manyama, Apr 22 2019

Keywords

Comments

Let 1/(sqrt(1-c*x)*sqrt(1-d*x)) = Sum_{k>=0} b(k)*x^k.
b(n) = Sum_{k=0..n} c^(n-k) * e^k * binomial(n,k) * binomial(2*k,k) = Sum_{k=0..n} d^(n-k) * (-e)^k * binomial(n,k) * binomial(2*k,k), where e = (d-c)/4.
n*b(n) = (c+d)/2 * (2*n-1) * b(n-1) - c * d * (n-1) * b(n-2) for n > 1.

Crossrefs

Cf. A000984 (c=0,d=4,e=1), A026375 (c=1,d=5,e=1), A081671 (c=2,d=6,e=1), A098409 (c=3,d=7,e=1), A098410 (c=4,d=8,e=1), A104454 (c=5,d=9,e=1).
Cf. A084605 (c=-3,d=5,e=2), A098453 (c=-2,d=6,e=2), A322242 (c=-1,d=7,e=2), A084771 (c=1,d=9,e=2), A248168 (c=3,d=11,e=2).
Cf. A322246 (c=-1,d=11,e=3), this sequence (c=4,d=16,e=3).
Cf. A322244 (c=-5,d=11,e=4), A322248 (c=-3,d=13,e=4).

Programs

  • Mathematica
    a[n_] := Sum[4^(n-k) * 3^k * Binomial[n, k] * Binomial[2*k, k], {k, 0, n}]; Array[a, 20, 0] // Flatten (* Amiram Eldar, May 13 2021 *)
  • PARI
    N=66; x='x+O('x^N); Vec(1/sqrt(1-20*x+64*x^2))
    
  • PARI
    {a(n) = sum(k=0, n, 4^(n-k)*3^k*binomial(n, k)*binomial(2*k, k))}
    
  • PARI
    {a(n) = sum(k=0, n, 16^(n-k)*(-3)^k*binomial(n, k)*binomial(2*k, k))}

Formula

a(n) = Sum_{k=0..n} 4^(n-k)*3^k*binomial(n,k)*binomial(2k,k).
a(n) = Sum_{k=0..n} 16^(n-k)*(-3)^k*binomial(n,k)*binomial(2k,k).
D-finite with recurrence: n*a(n) = 10*(2*n-1)*a(n-1) - 64*(n-1)*a(n-2) for n > 1.
a(n) ~ 2^(4*n+1) / sqrt(3*Pi*n). - Vaclav Kotesovec, Apr 30 2019

A110135 Square array of expansions of 1/sqrt(1-4x-4*k*x^2), read by antidiagonals.

Original entry on oeis.org

1, 2, 1, 6, 2, 1, 20, 8, 2, 1, 70, 32, 10, 2, 1, 252, 136, 44, 12, 2, 1, 924, 592, 214, 56, 14, 2, 1, 3432, 2624, 1052, 304, 68, 16, 2, 1, 12870, 11776, 5284, 1632, 406, 80, 18, 2, 1, 48620, 53344, 26840, 9024, 2332, 520, 92, 20, 2, 1, 184756, 243392, 137638, 50304
Offset: 0

Views

Author

Paul Barry, Jul 13 2005

Keywords

Comments

Column k has g.f. 1/sqrt(1-4x-4*k*x^2) and e.g.f. exp(2x)BesselI(0,2*sqrt(k)x). Columns include A000984, A006139, A084609, A098453. Row sums of triangle are A110136. Diagonal sums of triangle are A110137.

Examples

			As a square array, rows start
    1,   1,    1,    1,    1, ...
    2,   2,    2,    2,    2, ...
    6,   8,   10,   12,   14,   16, ...
   20,  32,   44,   56,   68,   80, ...
   70, 136,  214,  304,  406,  520, ...
  252, 592, 1052, 1632, 2332, 3152, ...
As a number triangle, rows start
    1;
    2,   1;
    6,   2,   1;
   20,   8,   2,   1;
   70,  30,  10,   2,   1;
  252, 136,  44,  12,   2,   1;
		

Formula

Square array T(n, k) = Sum_{j=0..floor(n/2)} C(n, j)*C(2(n-j), n)*k^j.
Number triangle T1(n, k) = Sum_{j=0..floor((n-k)/2)} C(n-k, j)*C(2(n-k-j), n-k)*k^j;

A294409 a(n) = n! * [x^n] exp(n*x)*BesselI(0,2*n*x).

Original entry on oeis.org

1, 1, 12, 189, 4864, 159375, 6578496, 323652399, 18572378112, 1216112914971, 89530000000000, 7319100286183983, 657910135976361984, 64494528072860946073, 6847518630093139525632, 782782183702056884765625, 95860848315529046085599232, 12520224284071636768582166787, 1737254440584625641929018966016
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 30 2017

Keywords

Comments

a(n) is the central coefficient of (1 + n*x + n^2*x^2)^n.

Crossrefs

Programs

  • Maple
    seq(coeff((1+n*x+n^2*x^2)^n,x,n),n=0..100); # Robert Israel, Oct 30 2017
  • Mathematica
    Table[n! SeriesCoefficient[Exp[n x] BesselI[0, 2 n x], {x, 0, n}], {n, 0, 18}]
    Table[CoefficientList[Series[(1 + n x + n^2 x^2)^n, {x, 0, n}], x][[-1]], {n, 0, 18}]
    Table[SeriesCoefficient[1/Sqrt[(1 + n x) (1 - 3 n x)], {x, 0, n}], {n, 0, 18}]
    Join[{1}, Table[n^n Sum[Binomial[n, k] Binomial[k, n - k],{k, 0, n}], {n, 1, 18}]]
    Join[{1}, Table[n^n HypergeometricPFQ[{1/2 - n/2, -n/2}, {1}, 4], {n, 1, 18}]]

Formula

a(n) = [x^n] 1/sqrt((1 + n*x)*(1 - 3*n*x)).
a(n) = A000312(n)*A002426(n).
a(n) ~ sqrt(3)*3^n*n^n/(2*sqrt(Pi*n)).

A376827 T(n, k) = binomial(n, k)*hypergeom([(1 - n)/2, -n/2], [1], 4).

Original entry on oeis.org

1, 1, 1, 3, 6, 3, 7, 21, 21, 7, 19, 76, 114, 76, 19, 51, 255, 510, 510, 255, 51, 141, 846, 2115, 2820, 2115, 846, 141, 393, 2751, 8253, 13755, 13755, 8253, 2751, 393, 1107, 8856, 30996, 61992, 77490, 61992, 30996, 8856, 1107
Offset: 0

Views

Author

Peter Luschny, Oct 05 2024

Keywords

Examples

			[0]    1;
[1]    1,    1;
[2]    3,    6,     3;
[3]    7,   21,    21,     7;
[4]   19,   76,   114,    76,    19;
[5]   51,  255,   510,   510,   255,    51;
[6]  141,  846,  2115,  2820,  2115,   846,   141;
[7]  393, 2751,  8253, 13755, 13755,  8253,  2751,  393;
[8] 1107, 8856, 30996, 61992, 77490, 61992, 30996, 8856, 1107;
		

Crossrefs

Cf. A002426 (column 0 and main diagonal), A098453 (row sums).

Programs

  • Maple
    T := (n, k) -> binomial(n, k)*hypergeom([(1 - n)/2, -n/2], [1], 4): seq(seq(simplify(T(n, k)), k = 0..n), n = 0..8);
  • Mathematica
    A376827[n_, k_] := Binomial[n, k]*Hypergeometric2F1[(1-n)/2, -n/2, 1, 4];
    Table[A376827[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Oct 21 2024 *)

Formula

T(n, k) = binomial(n, k)* A002426(n). - Detlef Meya, Oct 11 2024
Showing 1-5 of 5 results.