A123187 Triangle of coefficients in expansion of (1+13x)^n.
1, 1, 13, 1, 26, 169, 1, 39, 507, 2197, 1, 52, 1014, 8788, 28561, 1, 65, 1690, 21970, 142805, 371293, 1, 78, 2535, 43940, 428415, 2227758, 4826809, 1, 91, 3549, 76895, 999635, 7797153, 33787663, 62748517, 1, 104, 4732, 123032, 1999270, 20792408
Offset: 1
Examples
1 1, 13 1, 26, 169 1, 39, 507, 2197 1, 52, 1014, 8788, 28561 1, 65, 1690, 21970, 142805, 371293
Programs
-
Maple
T:= n-> (p-> seq(coeff(p, x, k), k=0..n))((1+13*x)^n): seq(T(n), n=0..10); # Alois P. Heinz, Jul 24 2015
-
Mathematica
p[0, x] = 1; p[1, x] = 13*x + 1; p[k_, x_] := p[k, x] = (13*x + 1)*p[k - 1, x]; w = Table[CoefficientList[p[n, x], x], {n, 0, 10}]; Flatten[w]
Formula
p(k, x) = (13*x + 1)*p(k - 1, x).
T(n,k) = 13^k*C(n,k) = Sum_{i=n-k..n} C(i,n-k)*C(n,i)*12^(n-i). Row sums are 14^n = A001023. G.f.: 1 / [1 - x(1+13y)]. - Mircea Merca, Apr 28 2012
Comments