A123192 Triangle read by rows: row n gives the coefficients in the expansion of x^abs(3*n - 2)*p(n;x), where p(n;x) denotes the bracket polynomial for the (2,n)-torus knots.
-1, 0, 0, 0, -1, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0
Offset: 0
Examples
From _Franck Maminirina Ramaharo_, Aug 11 2018: (Start) The bracket polynomial for some value of n: p(0;x) = -x^2 - 1/x^2; p(1;x) = -x^3; p(2;x) = -x^4 - 1/x^4; p(3;x) = -x^5 - 1/x^3 + 1/x^7; p(4;x) = -x^6 - 1/x^2 + 1/x^6 - 1/x^10; p(5;x) = -x^7 - 1/x + 1/x^5 - 1/x^9 + 1/x^13; p(6;x) = -x^8 - 1 + 1/x^4 - 1/x^8 + 1/x^12 - 1/x^16; p(7;x) = -x^9 - x + 1/x^3 - 1/x^7 + 1/x^11 - 1/x^15 + 1/x^19; ... The triangle giving the coefficients in x^abs(3*n - 2)*p(n;x) begins: -1, 0, 0, 0, -1 0, 0, 0, 0, -1 -1, 0, 0, 0, 0, 0, 0, 0, -1 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1 -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1 ... (End)
References
- Louis H. Kauffman, Knots and Physics (Third Edition), World Scientific, 2001. See p. 38 and p. 353.
Links
- Paul Corbitt, Torus Links and the Bracket Polynomial.
- Louis H. Kauffman, State models and the Jones polynomial, Topology Vol. 26 (1987), 395-407.
- Franck Ramaharo, Note on sequences A123192, A137396 and A300453, arXiv:1911.04528 [math.CO], 2019.
- Eric Weisstein's World of Mathematics, Bracket Polynomial.
- Eric Weisstein's World of Mathematics, Torus Knot.
- Wikipedia, Torus knot.
- Wikipedia, Medial graph.
Programs
-
Maxima
K(n, A, B, d) := if n = 0 then d else A*K(n - 1, A, B, d) + B*(A + B*d)^(n - 1)$ p(n, x) := x^abs(3*n - 2)*K(n, x, 1/x, -x^(-2) - x^2)$ t(n, k) := ratcoef(p(n, x), x, k)$ T:[]$ for n:0 thru 10 do T:append(T, makelist(t(n,k), k, 0, max(4, 4*n)))$ T; /* Franck Maminirina Ramaharo, Aug 11 2018 */
Extensions
Partially edited by N. J. A. Sloane, May 22 2007
Edited, new name, and corrected by Franck Maminirina Ramaharo, Aug 11 2018
Comments