cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123202 Triangle of coefficients of n!*(1 - x)^n*L_n(x/(1 - x)), where L_n(x) is the Laguerre polynomial.

Original entry on oeis.org

1, 1, -2, 2, -8, 7, 6, -36, 63, -34, 24, -192, 504, -544, 209, 120, -1200, 4200, -6800, 5225, -1546, 720, -8640, 37800, -81600, 94050, -55656, 13327, 5040, -70560, 370440, -999600, 1536150, -1363572, 653023, -130922, 40320, -645120, 3951360, -12794880
Offset: 0

Views

Author

Roger L. Bagula, Oct 04 2006

Keywords

Comments

The n-th row consists of the coefficients in the expansion of Sum_{j=0..n} A021009(n,j)*x^j*(1 - x)^(n - j).

Examples

			Triangle begins:
       1;
       1,    -2;
       2,    -8,     7;
       6,   -36,    63,    -34;
      24,  -192,   504,   -544,   209;
     120, -1200,  4200,  -6800,  5225,  -1546;
     720, -8640, 37800, -81600, 94050, -55656, 13327;
      ... reformatted. - _Franck Maminirina Ramaharo_, Oct 13 2018
		

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 9th printing. New York: Dover, 1972, p. 782.
  • Gengzhe Chang and Thomas W. Sederberg, Over and Over Again, The Mathematical Association of America, 1997, p. 164, figure 26.1.

Crossrefs

Programs

  • Maple
    M := (n,x) -> n!*subs(x=(x/(1-x)),orthopoly[L](n,x))*(1-x)^n:
    seq(print(seq(coeff(simplify(M(n,x)),x,k),k=0..n)),n=0..6); # Peter Luschny, Jan 05 2015
  • Mathematica
    w = Table[n!*CoefficientList[LaguerreL[n, x], x], {n, 0, 10}];
    v = Table[CoefficientList[Sum[w[[n + 1]][[m + 1]]*x^ m*(1 - x)^(n - m), {m, 0, n}], x], {n, 0, 10}]; Flatten[v]
  • Maxima
    create_list(ratcoef(n!*(1 - x)^n*laguerre(n, x/(1 - x)), x, k), n, 0, 10, k, 0, n); /* Franck Maminirina Ramaharo, Oct 13 2018 */
    
  • PARI
    row(n) = Vecrev(n!*(1-x)^n*pollaguerre(n, 0, x/(1 - x))); \\ Michel Marcus, Feb 06 2021

Formula

T(n, k) = [x^k] (n!*L_n(x)*(1 - x)^n) with L_n(x) the Laguerre polynomial after substituting x by x/(1 - x). - Peter Luschny, Jan 05 2015
From Franck Maminirina Ramaharo, Oct 13 2018: (Start)
G.f.: exp(-x*y/(1 - (1 - x)*y))/(1 - (1 - x)*y).
T(n,1) = A000142(n).
T(n,2) = -A052582(n).
T(n,n) = A002720(n). (End)

Extensions

Edited by N. J. A. Sloane, Jun 12 2007
Edited, new name, and offset corrected by Franck Maminirina Ramaharo, Oct 13 2018