A123203 a(n) = 2^(n+1) - 3*n.
1, 2, 7, 20, 49, 110, 235, 488, 997, 2018, 4063, 8156, 16345, 32726, 65491, 131024, 262093, 524234, 1048519, 2097092, 4194241, 8388542, 16777147, 33554360, 67108789, 134217650, 268435375, 536870828, 1073741737, 2147483558
Offset: 1
Examples
a(4) = 20, row sums of 4th row of triangle A131062: (1, 9, 9, 1). a(4) = 20 = (1, 3, 3, 1) dot (1, 1, 4, 4) = (1 + 3 + 12 + 4).
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Joseph Breen and Emma Copeland, Non-orientable Nurikabe, arXiv:2506.12612 [math.CO], 2025. See pp. 1, 4.
- Tamas Lengyel, On p-adic properties of the Stirling numbers of the first kind, Journal of Number Theory, 148 (2015) 73-94.
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Programs
-
Magma
[2^(n+1) -3*n: n in [1..40]]; // G. C. Greubel, Sep 14 2024
-
Mathematica
Table[2^(n+1) - 3*n, {n,40}] (* Vladimir Joseph Stephan Orlovsky, Nov 15 2008 *) LinearRecurrence[{4,-5,2},{1,2,7},40] (* Harvey P. Dale, Mar 30 2024 *)
-
SageMath
def A123203(n): return 2^(n+1) -3*n [A123203(n) for n in range(1,41)] # G. C. Greubel, Sep 14 2024
Formula
Binomial transform of [1, 1, 4, 4, 4, ...].
Equals row sums of triangle A131061.
From Johannes W. Meijer, Aug 15 2010; corrected by Colin Barker, Jul 28 2012: (Start)
a(n) = 2^(1+n) - 3*n.
(End)
G.f.: x*(1 - 2*x + 4*x^2)/((1-x)^2*(1-2*x)). - Colin Barker, Jul 28 2012
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3). - Colin Barker, Jul 29 2012
E.g.f.: 2*exp(2*x) - 3*x*exp(x) - 2. - G. C. Greubel, Sep 14 2024
Extensions
More terms from Vladimir Joseph Stephan Orlovsky, Nov 15 2008
Title changed by G. C. Greubel, Sep 14 2024
Comments