A123206 Primes of the form x^y - y^x, for x,y > 1.
7, 17, 79, 431, 58049, 130783, 162287, 523927, 2486784401, 6102977801, 8375575711, 13055867207, 83695120256591, 375700268413577, 2251799813682647, 9007199254738183, 79792265017612001, 1490116119372884249
Offset: 1
Keywords
Examples
The primes 6102977801 and 1490116119372884249 are of the form 5^y-y^5 (for y=14 and y=26) and therefore members of this sequence. The next larger primes of this form would have y > 4500 and would be much too large to be included. - _M. F. Hasler_, Aug 19 2014
Links
- T. D. Noe, Table of n, a(n) for n=1..101 (terms < 10^400)
- H. Lifchitz & R. Lifchitz, PRP of the form x^y-y^x on primenumbers.net.
Crossrefs
Programs
-
Maple
N:= 10^100: # to get all terms <= N A:= NULL: for x from 2 while x^(x+1) - (x+1)^x <= N do for y from x+1 do z:= x^y - y^x; if z > N then break elif z > 0 and isprime(z) then A:=A, z; fi od od: {A}; # Robert Israel, Aug 29 2014
-
Mathematica
Take[Select[Intersection[Flatten[Table[Abs[x^y-y^x],{x,2,120},{y,2,120}]]],PrimeQ[ # ]&],25] nn=10^50; n=1; t=Union[Reap[While[n++; k=n+1; num=Abs[n^k-k^n]; num
0&&PrimeQ[#]&]],nn]] (* Harvey P. Dale, Nov 23 2013 *) -
PARI
a=[];for(S=1,199,for(x=2,S-2,ispseudoprime(p=x^(y=S-x)-y^x)&&a=concat(a,p)));Set(a) \\ May be incomplete in the upper range of values, i.e., beyond a given S=x+y, a larger S may yield a smaller prime (for small x). - M. F. Hasler, Aug 19 2014
Comments