cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123208 Start with 1, then alternately add 2 or double.

Original entry on oeis.org

1, 3, 6, 8, 16, 18, 36, 38, 76, 78, 156, 158, 316, 318, 636, 638, 1276, 1278, 2556, 2558, 5116, 5118, 10236, 10238, 20476, 20478, 40956, 40958, 81916, 81918, 163836, 163838, 327676, 327678, 655356, 655358, 1310716, 1310718, 2621436, 2621438, 5242876, 5242878
Offset: 0

Views

Author

Philippe Deléham, Oct 04 2006

Keywords

Examples

			1, 1+2=3, 3*2=6, 6+2=8, 8*2=16, ...
		

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+3*x+3*x^2-x^3)/((1-x^2)*(1-2*x^2)))); // Vincenzo Librandi, Jun 25 2013
  • Maple
    a:=proc(n) if n mod 2 = 0 then 5*2^(n/2)-4 else 5*2^((n-1)/2)-2 fi end: seq(a(n),n=0..45); # Emeric Deutsch, Oct 10 2006
  • Mathematica
    nxt[{a_,b_}]:={b+2,2(b+2)}; Rest[Flatten[NestList[nxt,{1,1},20]]] (* or *) LinearRecurrence[{0,3,0,-2},{1,3,6,8},40] (* Harvey P. Dale, Oct 10 2012 *)
    CoefficientList[Series[(1 + 3 x + 3 x^2 - x^3) / ((1 - x) (1 + x) (1 - 2 x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 25 2013 *)

Formula

a(2n) = 5*2^n - 4; a(2n+1) = 5*2^n - 2 (n >= 0). - Emeric Deutsch, Oct 10 2006
From Colin Barker, Sep 10 2012: (Start)
a(n) = 3*a(n-2) - 2*a(n-4).
G.f.: (1+3*x+3*x^2-x^3)/((1-x)*(1+x)*(1-2*x^2)). (End)
a(2n) = A048487(n); a(2n+1) = A051633(n). - Philippe Deléham, Apr 15 2013
E.g.f.: 5*cosh(sqrt(2)*x) - 4*cosh(x) + 5*sinh(sqrt(2)*x)/sqrt(2) - 2*sinh(x). - Stefano Spezia, Oct 03 2023

Extensions

More terms from Emeric Deutsch, Oct 10 2006