A123255 Numbers k such that 4k+1, 4k+2, and 4k+3 are all semiprimes.
8, 21, 23, 30, 35, 50, 53, 54, 75, 98, 111, 158, 174, 210, 230, 260, 284, 315, 336, 350, 410, 440, 459, 473, 485, 495, 525, 545, 554, 576, 590, 608, 615, 629, 660, 680, 683, 774, 846, 900, 923, 966, 975, 989, 1071, 1103, 1133, 1148, 1220, 1400, 1430, 1463, 1499
Offset: 1
Examples
a(1) = 8 because 4*8+1 = 33 = 3*11 is semiprime and 4*8+2 = 34 = 2*17 is semiprime and 4*8+3 = 35 = 3*5 is semiprime.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Magma
IsSemiprime:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ n: n in [2..1500] | IsSemiprime(4*n+1) and IsSemiprime(4*n+2) and IsSemiprime(4*n+3) ]; // Vincenzo Librandi, Dec 22 2010
-
Mathematica
Select[Range[1100],Union[PrimeOmega[4#+{1,2,3}]]=={2}&] (* Harvey P. Dale, Feb 02 2015 *)
-
Python
from sympy import factorint, isprime def issemiprime(n): return sum(factorint(n).values()) == 2 if n&1 else isprime(n//2) def ok(n): return all(issemiprime(4*n+i) for i in (2, 1, 3)) print([k for k in range(1500) if ok(k)]) # Michael S. Branicky, Nov 26 2022
Formula
Extensions
336 and 680 added by Vincenzo Librandi, Dec 22 2010
Comments